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Abstract

In this project, we survey and discuss incremental Voronoi diagrams and their applications
to halfplane proximity queries. We examine how two different abstract representations of the
incremental Voronoi diagram, both making use of grappa trees, are updated through flarb oper-
ations to reflect the insertion of a new site into the Voronoi diagram. We study the amortized
combinatorial cost of flarb operations and describe an algorithm for performing the flarb when
sites are added in convex position.

1 Introduction

Voronoi diagrams are a very useful data structure in computational geometry for solving a variety
of problems regarding the proximity of points in a plane. They are widely used in fields ranging
from informatics, to civics and planning, to the natural sciences. Voronoi diagrams are formally
defined as follows. Given a finite set of sites S, every site pi ∈ S is surrounded by a convex polygon
V (i), called the Voronoi region, with the property that pi is the closest of the sites in S to any
point in V (i). Because every V (i) is an intersection of halfplanes, every V (i) is convex. All of
the Voronoi regions divide the plane up into a convex net called the Voronoi diagram of S. Once
the Voronoi diagram is constructed, it can handle point location queries in the cells of the Voronoi
diagram.

1.1 Static Voronoi Diagrams

Voronoi diagrams were first introduced in 1975 [8] along with an optimal O(n log n) time construc-
tion algorithm that used a divide-and-conquer approach. In 1987, Fortune’s Algorithm, a sweepline
technique for constructing Voronoi diagrams, was introduced [6]. This technique was far simpler to
implement than the divide-and-conquer approach, whose merge step involved complicated details.
The sweepline technique is also able to compute the Voronoi diagram of weighted point sites.

The progress made in Voronoi diagrams produced O(n log n) algorithms for several problems
which only had Ω(n2) algorithms prior to the O(n log n) Voronoi diagram introduced in 1975. These
problems include, but are not limited to, nearest or farthest neighbor, Euclidean minimum spanning
tree, minimum weight triangulation, largest empty circle, and convex hull [8].
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The farthest point Voronoi diagram, where each Voronoi region V (i) consists of the points
that are farther from pi than any other site, is a variation of the classical nearest point Voronoi
diagram. Later in this paper, we will discuss techniques for modifying both nearest and farthest
point Voronoi diagrams. In [1], a linear time algorithm for computing the Voronoi diagram of a
convex polygon was introduced. We will discuss how such a diagram can be maintained when sites
are added incrementally [2].

1.2 Incremental Voronoi Diagrams

In many applications, sites are incrementally inserted into the set S of sites. Allen et al. [2] showed
that the amortized number of structural changes (edge insertions and removals) needed to update
a Voronoi diagram of S to reflect an inserted site is O(

√
n).

Aronov et al. [3] showed an amortized O(log n) upper bound on the number of structural
changes needed to update an incremental farthest point Voronoi diagram in the case where the
points are inserted along their convex hull in counterclockwise order. Their proof is existential, and
they do not provide an algorithm to find the amortized O(log n) links and cuts that ought to be
performed when a site is inserted.

Allen et al. presented an O(K log7 n) algorithm which maintains the Voronoi diagram of points
in convex position as new points are inserted, where K is the number of structural changes. By
the Allen et al. bound, the runtime of this algorithm in the case of general insertion order is
O(
√
n log7 n). By the Aronov et al. bound, the runtime of this algorithm in the case where sites

are inserted along the convex hull in counterclockwise order is O(log8 n).

2 Grappa Trees

In order to store the representation of the Voronoi diagrams while efficiently supporting incremental
operations, both papers make use of grappa trees [3], a data structure based on the worst-case
formulation of Sleator and Tarjan’s link-cut trees [9]. Like link-cut trees, grappa trees are a dynamic
graph data structure representing a forest of trees, based on the key idea of representing trees in
terms of vertex-disjoint preferred paths. In grappa trees, each path is a maximal vertex-disjoint
path stored in a biased binary tree; paths are ordered by tree depth and connected to each other
by non-path edges.

Unlike link-cut trees, however, grappa trees are meant to represent forests of binary trees for
their usage in representing Voronoi diagrams, which allows for several key modifications. Every
original node in a represented tree can be forced to have degree 3 by adding a superroot above
the root and adding extra left and/or right children to original vertices as required. For a direct
representation of a Voronoi diagram, these external vertices can represent points at infinity. The
topology of grappa trees allows them to represent 3-regular Voronoi diagrams for sets of points
in convex position, which will not have cycles in their Voronoi edges. Additionally, grappa trees
support maintaining ”left” and ”right” marks on each edge of the represented trees, enabling several
new operations beyond those offered by link-cut trees.
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Grappa trees support the following operations in worst-case O(log n) time:

make-tree(v): Construct a new grappa tree T with a single internal vertex v. Note that two
external vertices and a superroot are also attached to v with edges with null labels.
link(u, v): Given an external vertex v in Tv and a superroot u in Tu, connect the parent of v to
the child of u to and delete extra external nodes to merge Tu and Tv into a new tree T .
cut(e): Delete the existing edge e = (u, v) in tree T , splitting into two trees T1 and T2, one con-
taining u and one containing v.
evert(v): Make external node v the superroot of the tree, reversing the orientation of every edge
along the path from the superroot to v.
left-mark(T, v,ml): Set the left mark of every edge on the path from the superroot to v in T to
the new mark ml.
right-mark(T, v,mr): Set the right mark of every edge on the path from the superroot to v in T
to the new mark mr.
Oracle-search(T,Oe): Search for the edge e in tree T in the following way: given two incident
edges f and f ′ and their left and right marks, the provided oracle Oe(f, f

′,ml
f ,m

r
f ,m

l
f ′ ,m

r
f ′) de-

termines in constant time whether e is in the component of T − f that contains f ′, or in the rest
of the tree. The oracle-search returns the found edge e along with its left and right marks.

Denote as T the expanded rooted binary tree which is being represented; its grappa tree struc-
ture will be denoted R. Internal vertices in the biased binary trees represent edges, and leaves
represent vertices of T ; due to the structure of T , we can also consider each leaf to represent the
unique non-path child edge of its vertex. Then, R is a tree with vertices representing path and non-
path edges of T . By explicitly storing both R and T , which is possible due to the bounded-degree
assumption, it is possible to maintain and propagate markings across all operations with only a
constant-factor cost. Since, as with link-cut trees, paths and biasing can be chosen for R to have
height O(log n), the marking and oracle-search operations can also be implemented with O(log n)
worst-case runtimes [3].

3 TREE-FLARB

After we add a new site to an existing Voronoi diagram, we need to reconstruct the current graph
by doing a series of links and cuts. There are various techniques of reconstructing a Voronoi di-
agram such as randomization in [7]. We will focus on two deterministic operations, tree-flarb
and cycle-flarb (Section 5), that model insertions of new sites in two different abstract repre-
sentations of Voronoi diagrams. For each operation, we motivate and describe the algorithm; then
we analyze the amortized cost of insertions.

In this section, we investigate a special case of incremental Voronoi diagrams, where all the
sites are added in convex position in counterclockwise order. In this case, we use a tree-flarb
operation to model the insertion of a new site. We want to show that the amortized cost (number
of structural changes) of each tree-flarb operation is O(log n). Before we introduce the tree-
flarb operation, we construct an expanded binary tree T for a Voronoi diagram D.

Definition 1. In an expanded binary tree G(V,E), v ∈ V is internal if and only if it is not a leaf
or the superroot. (v1, v2) ∈ E is internal if and only if vi and vj are both internal.
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Definition 2. An anchored subtree is a connected subgraph which consists of the root and a subset
of the internal nodes.

We construct the expanded binary tree T in the following way: for every vertex vi in D, we
create an internal node ni in T ; consequently, for every finite edge ei in D we create an internal
edge in T . For every infinite edge in D coming from vertex vi, there is an external edge from node
ni to an external node n′i in T . We make the most recently inserted vertex the root of T , with
an external edge going to the superroot. We sort based on the counterclockwise order around a
vertex, which corresponds to an internal node in T . [3]

The goal of a tree-flarb operation is to transform an anchored subtree into a right-leaning
path from the root. Whenever a new point is inserted, a new Voronoi vertex forms, which becomes
the new root of the tree. We then use the tree-flarb operation once on S to restructure the tree
to represent the new Voronoi diagram.

Figure 1: T is the tree that represents the original Voronoi diagram, and the anchored subtree S
are the nodes in red. In T ′, a new root is added. T ′′ is the result of performing a tree-flarb on
T ′.

Definition 3. A Zig rotation is a right rotation.

Figure 2: An example of a Zig rotation - the highlighted edge is a light edge

Definition 4. A Zag rotation involves restructuring into a right-leaning subtree an anchored subtree
where there is a path from the root that goes left one edge, right k edges, and left one edge again.
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Figure 3: An example of a Zag rotation

Definition 5. A Stretch operation makes an anchored subtree right-leaning by concatenating the
right-leaning paths in the anchored subtree along the right “spine”.

We hope to prove that the amortized cost of the entire tree-flarb operation is O(log n)

structural changes. We use the potential function Φ = c
∑

ni∈T lg(
weight(subtreeleft(ni))
weight(subtreeright(ni))

), where

weight(T ) is the total number of nodes in subtree T , and c is a constant.

Definition 6. A heavy path from a node is a path where every edge on the path recursively goes to
the subtree with a larger weight. A light edge is an edge that connects two heavy paths.

The tree-flarb operation begins with adding a root to the the anchored subtree; this takes a
constant number of pointer changes, and the potential changes by at most O(log n) because only
the new root contributes to the change in potential.

We do a Zig rotation whenever we have a light left edge in the anchored subtree S. We do a
Zag rotation whenever we have a path in S that goes left one edge, right k edges and left one edge
again.

Observation 1. After completing all possible Zig and Zag rotations on the graph, we observe
that the graph must have a right-leaning path consisting of the root and all light edges. For every
vertex on the path, if it has a left subtree, the edge to its left child is heavy and its left subtree is a
right-leaning path.

Now we perform the final Stretch operation to make the internal nodes of this tree a right-leaning
path, like T ′′ in Fig. 1.

Lemma 1. The amortized cost of a Zig rotation on a light edge is 0.

Proof. The actual cost of this operation is a constant number of pointer changes.
We will use the notations in Fig.2 to analyze the change in potential. Since we are rotating on

a light edge, C has a larger weight than the total weight of A and B. For the original root, its left
subtree becomes lighter and its right subtree remains the same, so its potential decreases. For the
new root, its right subtree remains the same but its left subtree is at least twice its weight before,
so its potential drops by at least c. We can pick a constant c that offsets the number of pointer
changes to make the amortized cost 0.
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Lemma 2. The amortized cost of a Zag rotation is 0.

Proof. We do a constant number pointer changes through moving a constant number of subtrees
and 3 rotations; hence, the actual cost is constant.

To analyze the change in potential, we first consider the nodes in the middle branch that is
right-leaning. Their left subtrees remain the same but their right subtrees become heavier in the
new tree, so their potential decreases. For the rest of the nodes, their potential drops by at least c
[3], so their contribution to the overall change in potential can offset the number of pointer changes
by picking an appropriate constant c for the potential function; hence the amortized cost is 0.

Lemma 3. After exhausting all possible Zig and Zag rotations, the number of pointer changes
required for a Stretch operation is amortized O(log n).

Proof. The actual cost of the concatenation is O(log n) pointer changes: due to Observation 1, the
weight on the right subtree decreases by half after a heavy left edge, so the number of concatenations
is O(log n). Since the left subtree gets moved into the right subtree, the potential decreases.
Therefore, the total amortized cost of the last step is O(log n).

Combining Lemma 1, 2, and 3, we conclude that the amortized number of structural changes
for each tree-flarb operation is O(log n).

4 Incremental Voronoi Diagram via Grappa Trees and TREE-
FLARB

In this section, we prove the existence of a data structure supporting the the construction of an
incremental Voronoi diagram when points are added in convex position in counterclockwise order.
Furthermore, we also show that we can build an oracle for the grappa tree’s oracle-search
function for halfplane proximity queries.

Note that this proof is solely existential as it does not provide an algorithm for finding the
structural changes to be made.

Theorem 1. There exists a data structure that supports insertions of new points in convex position
in counterclockwise order in a Voronoi Diagram in O(log n) structural changes, as well as halfplane
proximity queries in amortized O(log n) time.

Proof. We present the grappa tree that represents an incremental Voronoi diagram as in section 3,
where each node in the grappa tree represents a Voronoi vertex, corresponding by dual to a Delaunay
triangle, and internal and external edges represent finite edges infinite edges of the Voronoi diagram,
respectively. We also use left and right marks on each edge in the grappa tree to respectively label
the Voronoi regions to the left and right of the edge. By comparison to the standard incremental
algorithm for computing a Delaunay triangulation [5, Section 9.3], we notice that the changes
made upon inserting a new point for the Delaunay triangulation correspond directly to the changes
made by a tree-flarb operation with respect to the dual Voronoi diagram, giving correctness of
maintaining the Voronoi diagram via tree-flarb [3].

Whenever we make a pointer change in the flarb operation, the marks on the edges incident to a
new region need to be updated. We update their right marks by calling the right-mark function
on the rightmost node in T , which recursively changes the right marks in the right “spine” of the
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tree. For the left marks, we call the left-mark function on the linked root when we call the link
function. Since we make at most O(n log n) updates on all the markings in the tree in total when
n vertices are inserted into the tree, the amortized number of changes per insertion is O(log n).

Now we construct the query oracle to be used by the Oracle-Search operation for supporting
nearest- or farthest-neighbor queries in the data structure. The oracle takes in two incident edges
(u, v), (v, w) and the left and right marks of both edges, and returns which side of the edge (u, v)
has the answer to the query. Let pi, pj , pk be the 3 points that make up the Delaunay triangle for v,
then one of the marks of (v, w) is pi or pj , and the other one is pk. We take the intersection of the
the lines bisecting the sides of the Delaunay triangulation to find the Voronoi vertex corresponding
to v, then we draw two rays from this vertex opposite to pi and pj that split the plane into two
parts. Finally, we can find which of the two parts contain the query point in constant time by using
the two marks on the edges. This completes the description of the constant-time query oracle.

We prove in Section 3 that a tree-flarb operation requires amortized O(log n) structural
changes, and we flarb once for every new insertion. Given a constant time oracle, we know that
oracle-search in grappa trees takes O(log n) time.

5 CYCLE-FLARB

In this section, we introduce the cycle-flarb operation, which models the insertion (in any order)
of new sites in Voronoi diagrams.

The Voronoi diagram for any set of points is a 3-regular planar graph after using the line at
infinity to join the endpoints of unbounded edges in clockwise order. Additionally, inserting a new
point into the plane means adding a new face to the Voronoi diagram. This structural change can
be implemented by a cycle-flarb operation where the curve C is the boundary of the new face.

5.1 Definitions and Notation

Definition 7. A planar graph G is flarbable on simple closed curve C, if
1. the graph induced by the set of vertices of G that lie in the interior of C is connected,
2. C intersects each edge of G at most once,
3. C does not pass through any vertex of G.

Definition 8. For a 3-regular planar graph G that is flarbable on simple closed curve C, a cycle-
flarb operation F (G,C) modifies G as follows:
1. For each edge (u, v) with one vertex u lying in the interior of C and one vertex v lying in the
exterior of C, create a new vertex w at C ∩ (u, v) and connect w to v along (u, v),
2. For every two newly created vertices that are on edges intersected by C successively, create a
new edge between them along C,
3. Finally, delete all vertices lying in the interior of C and all their incident edges.

Let G be a planar graph flarbable on simple closed curve C. Let f be a face of G. We have the
following definitions:
1. |f | is the number of edges on the boundary of f .
2. f ′ is the modified version of face f after F (G,C).
3. A face f is augmented if |f ′| > |f |, shrinking if |f ′| < |f |, and preserved if |f ′| = |f |.
4. P (G,C), A(G,C), S(G,C) are the set of preserved, augmented, and shrinking faces crossed by
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Figure 4: cycle-flarb example; note that a flarb may induce very few structural changes in the
graph.

curve C, respectively.
5. Let EC be the set of fleeq edges: edges of G crossed by C.
6. Let B(G,C) be the set of faces of graph G completely contained in the interior of curve C.

5.2 Cost of a CYCLE-FLARB

We analyze the minimum number of structural changes that G undergoes when a cycle-flarb is
performed; we call this the cost of the flarb. A structural change is either a link or a cut.

Lemma 4. COST (F (G,C)) ≤ 12|S(G,C)|+ 3|B(G,C)|+O(1).

Proof. Consider GC , the graph induced by the vertices in the interior of C taken together with the
fleeq edges and their endpoints. All vertices in GC have degree 3 except for the |EC | vertices which
lie outside of curve C which have degree 1. It follows from some work with Euler’s formula that
GC has at most 2|EC |+ 3|B(G,C)| edges.

Note that if two preserved faces share a non-fleeq edge e in GC , then the four neighbors of the
endpoints of e lie outside of C (because the number of edges bounding the faces must be preserved
after the flarb). Because GC is connected, e and its neighbors would make up the entire GC graph,
so the bound holds trivially.

Every preserved face contributes to at least 3 edges being preserved (2 fleeq edges and a 3rd
edge entirely in GC). One of those fleeq edges might be shared between two different preserved
faces, so each preserved face contributes to at least 2 unique preserved edges of GC , and at most
2|EC |+ 3|B(G,C)| − 2|P (G,C)| edges are cut.

We must reintroduce an edge for every non-preserved fleeq edge and every non-preserved face.
Thus, to complete the flarb, we require at most 2(|EC | − |P (G,C)|) link operations.

COST (F (G,C)) ≤ 4|EC |+ 3|B(G,C)| − 4|P (G,C)|
≤ 4(|A(G,C)|+ |S(G,C)|+ |P (G,C)|) + 3|B(G,C)| − 4|P (G,C)|
= 4(|A(G,C)|+ |S(G,C)|) + 3|B(G,C)|
≤ 12|S(G,C)|+ 3|B(G,C)|

The last inequality follows from the fact that in the nontrivial case, every augmented face must
neighbor at least one shrinking face.
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5.3 Cost of a Sequence of CYCLE-FLARB Operations

Let G = (V,E) be a 3-regular planar graph, with set F of faces. To analyze the amortized cost of
each operation in a sequence of flarb operations on graph G, we use potential function

Φ(G) = λ
∑
f∈F

µ(f)

where µ(f) = min{d
√
|V |e, |f |}, and λ is some sufficiently large constant.

Note that when |f | and |f ′| are both larger than
√
|V |, µ(f) is unchanged; we’ll call such faces

f large faces. This allows us to focus only on smaller faces in our analysis.
By considering the number of edges in the connected subgraph defined by all the edges of G

enclosed or intersected by C that bound some face that γ crosses through, we arrive at the following
lemma.

Lemma 5. Given G flarbable on curve C and sub-curve γ ⊆ C, let f1, . . . , fk be the sequence of
faces crossed by γ, and let f ′1, . . . , f

′
k be their corresponding modified faces after F (G,C). Then

k∑
i=1

(|fi| − |f ′i |) ≥
|S(G, γ)|

2

Notation: Let G0 = G and Gi = F (Gi−1, Ci−1) where Gi is flarbable on simple closed curve Ci for
all nonnegative integers i.

Theorem 2. For a 3-regular planar graph G = (V,E) and some sequence of disjoint cycles
C0, . . . , CN such that Gi is flarbable on Ci,

COST (F (Gi−1, Ci−1)) + Φ(Gi)− Φ(Gi−1) ≤ O(
√
|Vi|)

Proof. We split curve Ci into smaller curves γ1, . . . , γh so that each γi ⊆ C is a maximal curve
that doesn’t intersect the interior of a face with more than

√
|Vi| edges. Let sj be the number of

shrinking faces crossed by γj .
From section 5.2, we got an upper bound on COST (F (Ci,Gi))

COST (F (Ci,Gi)) ≤ 12|S(Gi, Ci)|+ 3|B(Gi, Ci)|+O(1) (1)

≤ 12
√
|Vi|+ 12

h∑
j=1

sj + 3|B(Gi, Ci)|+O(1) (2)

Let fn be the new face created by the flarb. Let A(Ci) be the set of faces crossed by curve Ci.
Recall that when |f | and |f ′| are both larger than

√
|V |; we’ll call these faces large faces. Let Li

be the set of large faces.
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Next, we upper bound Φ(Gi)− Φ(Gi−1).

Φ(Gi)− Φ(Gi−1) = µ(fn) + λ
∑

f∈A(Ci)

(µ(f ′)− µ(f))− λ
∑

f∈B(Gi−1,Ci−1)

µ(f) (3)

≤ µ(fn) + λ
h∑
j=1

(
∑

f∈A(γj)

(µ(f ′)− µ(f))) + λ
∑
f∈Li

(µ(f ′)− µ(f))− 3λ|B(Gi−1, Ci−1)|

(4)

≤
√
|Vi|+ λ

h∑
j=1

(
∑

f∈A(γj)

(µ(f ′)− µ(f))) + λ|Li| − 3λ|B(Gi−1, Ci−1)| (5)

≤
√
|Vi| −

λ

2

h∑
j=1

sj + λ|Li| − 3λ|B(Gi−1, Ci−1)| (6)

Inequality (4): We broke up the first summation by independently considering the large faces in Li
and the small faces crossed by some subcurve. Additionally, step 3 of cycle-flarb deletes all of
the faces, each with at least 3 edges, in the interior of the cycle.
Inequality (5): Each face can gain at most one edge, so µ(f ′) − µ(f) ≤ 1. By definition, µ(fn) ≤√
|Vi|.

Inequality (6): We apply Lemma 5 to the first summation.
Replacing |Li| with

√
|Vi| in equation 6 and taking that together with equation (2) along with

a sufficiently large λ (λ ≥ 24), we arrive at the statement of the theorem.

Theorem 1 gives us the result that the amortized number of structural changes needed to update
a Voronoi diagram is O(

√
n). We note that this is also a lower bound as it is possible to construct

a graph where the amortized cost of a flarb is Θ(
√
n) [2].

6 Performing CYCLE-FLARB for Sites Added in Convex Position

We consider the problem of maintaining the incremental Voronoi diagram for sites being added in
convex position. We use grappa trees to explicitly store the Voronoi diagram, and maintain the
structure through flarb operations on the insertion of new sites. Each time a new site is inserted,
it defines a flarbable curve C, corresponding to the boundary of the new Voronoi cell; conducting
this flarb operation on the Voronoi diagram yields the necessary changes to the structure of the
graph for the new diagram.

Recall that a grappa tree represents an expanded binary tree T , and also maintains left and
right marks for each edge of T . Here, T represents the topology of the 3-regular planar graph of the
Voronoi diagram, where external vertices denote points at infinity; left and right marks on an edge
e of T are used to denote the two faces of the Voronoi diagram adjacent to e. These markers allow
the grappa tree to store the geometric representation of the Voronoi diagram, as without them the
tree only stores the topology.

6.1 Performing the Flarb

Let S be a set of sites in the plane in convex position, and V (S) be the grappa tree representing
the Voronoi diagram on S as above. Given a new site q in the plane such that S ∪ {q} is in convex
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position, let S′ denote S ∪ {q}, and let V (S′) be the Voronoi diagram on S′ whose representation
we’d like to obtain. Let ∂CELL(q, S′) denote the boundary of Voronoi cell of q in V (S′), the
cell we’d like to add to our existing diagram via a flarb operation. Note that ∂CELL(q, S′) is a
flarbable curve C on the Halin graph view of V (S) (connecting external vertices in a cycle). Also,
this curve will contain one of the external vertices of V (S), namely, the point at infinity of the
bisecting edge between the two neighbors of q along the convex hull of S′. The basic process of
computing this flarb operation to transform from V (S) to V (S′) is outlined as follows:

1. Identify the external vertex p of V (S) that is inside C; call Evert(p) on V (S) so that V (S)
is rooted at p.

2. Consider the heavy-path decomposition of V (S). After step 1, the root of each path is the
endpoint closest to p. Compute the set RC of the heavy-path roots which are inside C. Any
heavy edge in V (S) that intersects C must lie on one of the heavy paths of one of these roots.

3. Since C is flarbable, the portion of V (S) contained in C is connected; thus, for each heavy
path hr whose root r is in RC , the portion of the path contained in C is connected. We
can then identify the last vertex contained in C for each of these paths; equivalently, we can
identify the unique fleeq-edge er in each path crossing C, if there exists one.

4. Find and mark the non-preserved edges for deletion. Recall that, with respect to the flarb, a
preserved edge is an edge that bounds a preserved face. Thus, a preserved edge is an edge that
reappears, or a fleeq-edge adjacent to an edge that reappears. Denote as Vq(S) the subtree
induced by the edges of V (S) intersecting C; all non-preserved edges will be in Vq(S). We
can find all of these non-preserved edges by a method outlined in Section 6.1.3; we then mark
each of them as shadow edges for removal. Denote as σ the number of shadow/non-preserved
edges; we’d now like to remove the shadow edges and reconnect the graph in the right order.

5. Consider each connected component that would be formed when all shadow edges are removed
from Vq(S). By constructing an Eulerian tour on the subtree given by Vq(S) we can determine
the order in which these components will need to be reconnected after actually removing the
shadow edges; we will do this efficiently by turning connected components into supernodes
to compress the tree, to ensure we can obtain the tour in time proportional to σ. This
compressed tree can be constructed in O(σ log σ) time.

6. Remove the shadow edges, resulting in a (compressed) forest of connected components. Some
vertices will be left isolated; delete the isolated internal vertices. The node p at infinity will
become isolated, and we will replace it by two new vertices p1, p2 (which will correspond to
two new points at infinity in the final diagram). For each of the components lying entirely
outside C, create a new anchor node as the parent of the component. Construct a path from
p1 to p2 through the connected components (through their supernodes and anchor nodes) in
the Eulerian-tour-order of their leaves along new edges. Then, decompress the supernodes
and reattach the components using the new edges.

Having concluded modifications to Vq(S), these changes to the whole tree V (S) yield the new
tree V (S′) corresponding to the Voronoi diagram on S′, as desired.

Some more details on the processes of the steps follow:
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6.1.1 Step 2: Computing RC

Computing RC can be done in O(|RC | log6 n) time by making use of a data structure presented
by Chan [4] which answers extreme-point queries about convex hulls, and through some clever
geometric transformations to reframe this as such a convex-hull problem [2].

6.1.2 Step 3: Identifying fleeq-edges in paths

Recall that for a Voronoi diagram (with enough sites), each vertex v is the center of a definer circle
which passes through at least three sites, the definers of v. For a root r ∈ RC , we can identify
the fleeq-edge er (if it exists) in its corresponding heavy path hr in O(log n) time using an oracle-
search. To do so, we construct an oracle which, given adjacent edges f and f ′ which share vertex
v, determines in O(1) time which ”side” of the tree er is on by checking the regions/sites specified
by the face-markers of f and f ′ and checking whether q lies in the definer circle of v.

6.1.3 Step 4: Identifying non-preserved edges

Since we store face-markers on edges, we can check geometrically in constant time whether a given
vertex is contained in C by referring to the face-markers on its incident edges and checking its
definers. Using this, we can clearly check whether any given edge (v, w) is a fleeq-edge. We can
also check whether an edge is one that reappears by checking if its two adjacent edges are fleeq-
edges; thus, we can test in constant time whether a given edge is preserved. To find non-preserved
edges in Vq(S), we first check all edges (w, u) , where w is the last vertex of hr inside C (the vertex
of the fleeq-edge er closer to r). Any non-preserved node gets marked shadow, as mentioned. Next,
we find all bent edges on heavy paths, which are edges (u, v) such that the light edges of v and
u are opposite-sided (left and right, or vice versa). Note that a bent edge can’t be preserved; we
identify and mark them efficiently by modifying the biased binary trees in the grappa tree. After
running these checks, the edges marked as shadow will be exactly the non-preserved edges [2].
Additionally, we can show the following:

Lemma 6. |RC | = O(σ log n)

Proof. Consider each root r ∈ RC and its parent pr; the edge (r, pr) is a light edge, and pr is part
of a distinct heavy path ht for some root t ∈ RC . Construct a set of dependency paths as follows:
add a dependency pointer from r to t if pr is the first vertex in the unique fleeq-edge of ht, which
hooks the vertices in RC into a collection of paths.

Then, for each dependency path, if we look at the sink r of the dependency path, we note that
the edge (r, pr) cannot be preserved, since pr is neither a fleeq-edge nor incident to a fleeq-edge.
Each dependency path has such a (distinct) non-preserved edge. Also, each dependency path has
length O(log n), and the vertex set of the dependency paths together is RC . Then, σ is at least the
number of dependency paths, which is Ω(|RC |/ log n), so |RC | = O(σ log n).

6.2 CYCLE-FLARB Analysis

The flarb operation for inserting the new site q can be implemented in O(K log7 n) time, where K
is the cost of the flarb; computing the flarb takes O(|RC | log6 n+σ log n), and by the above lemma,
|RC | = O(σ log n). The work for the flarb uses Θ(σ) links and cuts. To construct an incremental
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Voronoi diagram for n sites in convex position, we have K = O(
√
n) for sites inserted in arbitrary

order [2], or K = O(log n) for sites added in counterclockwise order [3].

7 Discussion and Conclusion

In [3], Aronov et al. presented several methods of preprocessing n sites in convex position in
the plane in order to answer halfplane proximity queries, including the grappa-tree based Voronoi
construction discussed above. Interesting to note is that the incremental nature of the Voronoi
construction appears to be purely a side-effect of the construction, since the intended application
only requires a static diagram on the n points. In contrast, Allen et al. [2] set out with the
specific goal of constructing incremental Voronoi diagrams; hence, they present their own flarb op-
eration along with analysis and bounds which are relevant to general incremental Voronoi diagram
construction; this cycle-flarb comes from the natural view of adding a new site to a Voronoi
diagram, which requires reallocating space in the plane for the new cell corresponding to the site,
defining a flarbable curve. Their algorithmic construction of an incremental Voronoi diagram then
makes use of grappa trees from [3], which can only represent Voronoi diagrams on points in convex
position, though there is no restriction on insertion order.

In conclusion, we presented two abstract representations of incremental Voronoi diagrams. One
handles points added in convex position in counterclockwise order in amortized O(log n) structural
changes. The other handles general insertion order in amortized O(

√
n) structural changes and

O(K log7 n) time, where K is the number of structural changes.
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