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Definitions

Let G be a finite, simple, and undirected graph.

Definition (Slater, 1975 and Harary-Melter, 1976)

A set S ⊆ V (G) is a resolving set of G if, for any distinct
x , y ∈ V (G), there exists a vertex z ∈ S such that
d(x , z) 6= d(y , z). The metric dimension dim(G) of G is the
minimum cardinality of a resolving set of G .

Define dk (x , y) = min{d(x , y), k + 1}.
Definition (Jannesari-Omoomi, 2012)

A set A ⊆ V (G) is an adjacency resolving set for G if, for any
distinct x , y ∈ V (G), there exists a vertex z ∈ A such that
d1(x , z) 6= d1(y , z). The adjacency dimension adim(G) of G is
the minimum cardinality of an adjacency revolving set of G .

Definition (Geneson-Yi, 2020)

Function f : V (G)→ Z+ ∪ {0} is a resolving broadcast of G if,
for any distinct x , y ∈ V (G), there exists a vertex z such that
f (z) > 0 and df (z)(x , z) 6= df (z)(y , z). The broadcast dimension
bdim(G) of G is the minimum of

∑
v∈V (G) f (v) over all

resolving broadcasts f of G .
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An Application: Robot Navigation

Consider a robot moving from vertex to vertex on a graph G . There are
landmarks located at some of the vertices.

1 The minimum number of landmarks required for the robot to
determine its location from its distance to the landmarks is dim(G ).

2 The minimum number of landmarks required for the robot to
determine its location from the landmarks adjacent to it is adim(G ).

3 Transmitters with varying range k and cost k. The robot learns its
distance to each transmitter that it is within range of and learns
that it is out of range of the others.

The minimum total cost of transmitters required for the robot to
determine its location is bdim(G ).
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Asymptotic Lower Bounds

Theorem (Geneson-Yi, 2020)

For all graphs G of order n, we have

bdim(G ) = Ω(log n),

and this lower bound is asymptotically optimal for general graphs.

Theorem (Z)

For all acyclic graphs F of order n, we have

bdim(F ) = Ω(
√
n),

and this lower bound is asymptotically optimal.
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Comparing adim(G ) and bdim(G )

Theorem (Geneson-Yi, 2020)

For the the d-dimensional grid graph Gk = Πd
i=1Pk , we have

bdim(Gk) = Θ(k) and adim(Gk) = Θ(kd) for every k ∈ Z+ and any
d ≥ 1, where the constants in the bounds depend on d .

Corollary (Z)

There does not exist a family of acyclic graphs {Gk}k∈Z+ with

bdim(Gk) = k and adim(Gk) = 2Ω(k) for every k ∈ Z+.

Theorem (Z)

There exists a family of graphs {Gk}k∈Z+ with bdim(Gk) = Θ(k) and

adim(Gk) = 2Ω(k) for every k ∈ Z+.

Recall that bdim(G ) = Ω(log n) for all graphs G of order n. Thus, my

construction has broadcast dimension that is asymptotically optimal in

both its order and its adjacency dimension.
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The Effect of Edge Deletion

Let v and e, respectively, denote a vertex and an edge of a connected
graph G such that G − v and G − e are also connected graphs.

Theorem (Geneson-Yi, 2020)

Both bdim(G)
bdim(G−v) and bdim(G − v)− bdim(G ) can be arbitrarily large.

Question (Geneson-Yi, 2020)

Is it true that bdim(G − e)− bdim(G ) ≤ dG−e(u, v)− 1, where e = uv?

Theorem (Z)

The value bdim(G )− bdim(G − e) can be arbitrarily large.

The value bdim(G − e)− bdim(G ) can be arbitrarily larger than
dG−e(u, v), where e = uv .
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For all graphs G and any edge e ∈ E (G ), we have bdim(G−e)
bdim(G) ≤ 3.

Open Question (Z)

Is bdim(G)
bdim(G−e) bounded from above for all graphs G and any edge

e ∈ E (G )?

Open Question (Z)

Is bdim(G−v)
bdim(G) bounded from above for all graphs G and any vertex

v ∈ V (G )?



The Effect of Edge Deletion

Theorem (Z)

For all graphs G and any edge e ∈ E (G ), we have bdim(G−e)
bdim(G) ≤ 3.

Open Question (Z)

Is bdim(G)
bdim(G−e) bounded from above for all graphs G and any edge

e ∈ E (G )?

Open Question (Z)

Is bdim(G−v)
bdim(G) bounded from above for all graphs G and any vertex

v ∈ V (G )?



The Effect of Edge Deletion

Theorem (Z)

For all graphs G and any edge e ∈ E (G ), we have bdim(G−e)
bdim(G) ≤ 3.

Open Question (Z)

Is bdim(G)
bdim(G−e) bounded from above for all graphs G and any edge

e ∈ E (G )?

Open Question (Z)

Is bdim(G−v)
bdim(G) bounded from above for all graphs G and any vertex

v ∈ V (G )?



The Effect of Edge Deletion

Theorem (Z)

For all graphs G and any edge e ∈ E (G ), we have bdim(G−e)
bdim(G) ≤ 3.

Open Question (Z)

Is bdim(G)
bdim(G−e) bounded from above for all graphs G and any edge

e ∈ E (G )?

Open Question (Z)

Is bdim(G−v)
bdim(G) bounded from above for all graphs G and any vertex

v ∈ V (G )?



Thank You!

This research was conducted at the
2020 University of Minnesota Duluth
REU program. I extend my thanks
to Joe Gallian for organizing the
program and for suggesting the
problem, as well as the advisors,
Amanda Burcroff, Colin Defant, and
Yelena Mandelshtam, for their
mentorship.

This research was supported by

NSF-DMS grant 1949884 and NSA

grant H98230-20-1-0009.

3

1

1

1

bdim(G)=6

Contact: eyzhang@mit.edu

eyzhang@mit.edu


References

[1] Linda Eroh, Paul Feit, Cong X. Kang, and Eunjeong Yi, The
effect of vertex or edge deletion on the metric dimension of
graphs. Journal of Combinatorics, 6(4) (2015), 433–444.

[2] Jesse Geneson and Eunjeong Yi, Broadcast dimension of
graphs. arXiv:2005.07311 [math.CO], 2020.

[3] Frank Harary and Robert A. Melter, On the metric dimension
of a graph. Ars Combinatoria, 2 (1976), 191–195.

[4] Mohsen Jannesari and Behnaz Omoomi, The metric dimension
of the lexicographic product of graphs. Discrete Mathematics,
312(22) (2012), 3349–3356.

[5] Peter J. Slater, Leaves of trees. Congressus Numerantium, 14
(1975), 549–559.

https://arxiv.org/abs/2005.07311

