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Background: Problem Setting

Problem Setting
We consider the optimization problem

x∗ = arg min
x∈Rd

f(x), (1)

where f is a d dimensional strongly convex quadratic function and
∇f(x∗) = ~0.

Figure – Example strongly convex objective function where x∗ = ~0



Background: Discrete Gradient-Based Algorithms

Some examples of discrete time algorithms which optimize a convex
L-smooth objective function f :

Discrete Algorithm Convergence
Rate 1

Gradient Descent xk+1 = xk + δ∇f(xk) O
(
1
k

)
Heavy-Ball yk+1 = xk + δ∇f(xk) O

(
1
k

)
xk+1 = yk+1 − α(xk − xk−1)

Nesterov’s Accelerated yk+1 = xk + δ∇f(xk) O
(

1
k2

)
Gradient Descent xk+1 = yk+1 +

k
k+3(yk+1 − yk)

1. Global convergence rate



Background: Modified Equations

Continuous time limits of discrete optimization algorithms for convex
functions helps analyze the algorithms. Note that Heavy-Ball assumes
an µ-strongly convex f .

Modified Equation

Gradient Flow Ẋ −∇f(X) = 0

Heavy-Ball Ẍ + 2
√
µẊ +∇f(X) = 0

Nesterov’s Accelerated
Ẍ + 3

t Ẋ +∇f(X) = 0Gradient Descent



Background: Example

Figure – A comparison of discrete optimization methods and their limiting
ODEs for f(x1, x2) = 5 · 10−3x21 + x22



Background: Recent work

Deriving ODEs to describe discrete-time optimization
methods:

1 Su et. al. [2016] derive the modified equations and use continuous
time Lyapunov function to prove convergence

2 Wibisono et. al. [2016] derived the following ODE from a
Lagranian Flow with a parameterized convergence rate

Euler-Lagrange ODE
The Euler-Lagrange ODE

Ẍt +
p+ 1

t
Ẋt + Cp2tp−2∇f(Xt) = 0 (2)

has a continuous time convergence rate

f(Xt)− f(X∗) ≤ O
(
1

tp

)
. (3)



Background: Recent work

Wibisono et. al. presented a naive discretization of the
Euler-Lagrange ODE :

Naive Discretization (Explicit-Implicit Euler)

zk = zk−1 − Cpδpkp−1∇f(xk)

xk+1 =
p

k
zk +

k − p
k

xk

The goal of discretizing the Euler-Lagrange ODE is to achieve the
O
(
1
tp

)
convergence rate, however this does not occur for the naive

discretization.



Background: Recent work

Problem
The discrete algorithm oscillates towards the minimize then eventually
shoots to infinity, and the reason for this is unclear.

Figure – Discrete solution eventually shoots to infinity



Background: Recent work

Recently, work has been done on analyzing discretizations of
ODEs as optimization algorithms:

1 Zhang et. al. [2018] show that a direct Runge-Kutta discretization
scheme on the Euler-Lagrange ODE achieves acceleration when f
is sufficiently smooth

2 Shi et. al. [2019] explore discretization schemes of ODEs as
optimization methods

Our Goal
Determine why and when the naive method eventually diverges and
attempt to derive an expression to determine when divergence occurs.



Our Approach

We are primarily interested in determining whether a system of update
equations given by a certain discretization scheme has converging,
diverging, or stable long-term behavior. A system of update equations
given by a discretization method is

1 converging to the minimizer if the upper bound on |xk − x∗| is
decreasing as k increases, 2

2 diverging from the minimizer if the upper bound on |xk − x∗| is
increasing as k increases, and

3 stable if, for sufficiently large N , |xk − x∗| = |xk+1 − x∗| for all
k > N .

2. Note that |xk − x∗| does not have to be a monotonically decreasing sequence in
order to be converging.



Our Approach: One-Dimensional Case

We rewrite f(x), a general objective function where x is d-dimensional
and A is symmetric, as follows :

f(x) =
1

2
(x− x∗)TA(x− x∗)

=
1

2
(x− x∗)TPDP T (x− x∗)

=
1

2
(P T (x− x∗))TDP T (x− x∗)

=
1

2
x̃TDx̃

where x̃ := P T (x− x∗), P is the matrix of eigenvectors of A, and D is
the diagonal matrix of eigenvalues of A.
Since all dimensions of x̃ update independently of each other, the case
where x̃ and x are one-dimensional is without loss of generality.



Our Approach: Stability Function

We consider discretizations of the Euler-Lagrange ODE of the form(
x̃k+1

zk+1

)
=Mk

(
x̃k
zk

)
.

We define R(Mk) := |λk,max| where λk,max is the eigenvalue of Mk with
the largest magnitude, and R(M∞) = limk→∞R(Mk).

Proposition
An optimization algorithm will be

1 converging to the minimizer when R(M∞) < 1.
2 stable when R(M∞) = 1.

Proof Idea. We let ui :=
(
x̃i
zi

)
. Computing uk from u0, we have

uk =Mk−1Mk−2 . . .M1M0u0. When all the eigenvalues of Mi have
magnitude less than 1, then ‖ui‖ < ‖ui−1‖, and since ‖x̃i‖ ≤ ‖ui‖, then
the upper bound on ‖x̃i‖ is also strictly decreasing.



Our Approach

1 Write the discretization of the Euler-Lagrange ODE in the form[
xk+1

zk+1

]
=Mk

[
xk
zk

]
.

2 Determine R(M∞).
3 Analyze stability conditions for the method.

If R(M∞) < 1, the iterations will be converging to the minimizer.
If R(M∞) = 1, the iterations will be stable.
If R(M∞) > 1, then we determine the largest k for which R(k) < 1
in terms of parameters A, p, and δ in order to get a bound on when
the iterations exhibit stable behavior.



Euler Methods

Three different Euler discretization schemes are defined as follows for
any system of two continuous variables Xt and Zt such that
Ẋt = f1(Xt, Zt) and Żt = f2(Xt, Zt).
Let δ be the step size and let x0, z0 be initialized to the initial value of
the ODE that we are trying to discretize.

1 Explicit Euler Method

xk+1 = xk + δf1(xk, zk)

zk+1 = zk + δf2(xk, zk)

2 Implicit Euler Method

xk+1 = xk + δf1(xk+1, zk+1)

zk+1 = zk + δf2(xk+1, zk+1)

3 Explicit-Implicit Euler Method

xk+1 = xk + δf1(xk, zk)

zk+1 = zk + δf2(xk+1, zk+1)



Explicit-Implicit Euler Discretization

The update equations given by the discretization of

Ẋt = f1(Xt, Zt) =
p

t
(Zt −Xt)

Żt = f2(Xt, Zt) = −Cptp−1∇f(Xt).

using the explicit-implicit method and the identification t = δk are as
follows :

xk+1 − xk
δ

=
p

t
(zk − xk)

zk − zk−1
δ

= −Cptp−1∇f(xk).
(4)

This set of update equations eventually diverges after approaching and
oscillating around the minimizer, yet it is unknown why this occurs.



Explicit-Implicit Euler Method: Results

Theorem
Let f(x) : Rd −→ R be an L-smooth function defined as
f(x) = 1

2(x− x
∗)TA(x− x∗) where x∗ ∈ Rd is the unique minimizer

with ∇f(x∗) = ~0 and A is a positive definite, symmetric d× d matrix.
Let δ < 1

L and ε = δp. Then, after we go out enough iterations in the
system of update equations given by the naive discretization of the
Euler-Lagrange System such that k > p and take C < 1

εL , we have the
following properties :

1 If p = 2, the naive method exhibits stable end behavior.
2 If p > 2, the naive method will exhibit stable behavior when

k <

(
4

CLp2ε

) 1
p−2

.



Explicit-Implicit Euler Method: Proof

Proof Outline.
Step 1. Rewrite the update equations in matrix form :[

xk+1

zk+1

]
=

[
(1− p

k )I
p
kI

−Cpε(k + 1)p−1(k−pk )A I − Cpε(k + 1)p−1( pk )A

]
︸ ︷︷ ︸

Mk

[
xk
zk

]
.

(5)
Step 2. Next we determine that

R(Mk) = −
−akbk − ak + 2−

√
(akbk + ak − 2)2 − 4(1− ak)

2
(6)

where ak = p
k and let bk = Cpε(k + 1)p−1A.

Using this, we find the stability function, R(M∞) = limk→∞R(Mk).
Step 3. By analyzing R(M∞), we get the result stated in part (a) of
the theorem. By simplifying the inequality R(Mk) ≤ 1, we get the
results stated in part (b) of the theorem.



Numerical Results: Explicit Euler

As expected, an explicit Euler discretization becomes unstable quickly

Figure – Explicit Euler discretization of the Euler Lagrange quickly diverts
from the ODE



Numerical Results: Implicit Euler

As expected, Implicit Euler maintains convergence. Implicit Euler is
most useful in the special case where the objective function is in the
form f(~x) = A~x and A is a positive semi-definite matrix.

Figure – Implicit Euler compared to Nesterov-C



Numerical Results : Explicit-Implicit Euler

We see that the iteration of which we predict the algorithm to converge
is accurate.



Numerical Results: Runge-Kutta

Fourth order explicit Runge-Kutta discretization of the Euler-Lagrange
ODE with L = 10, δ = .01.



Discussion and Future Research

1 We showed that the naive method is stable until a certain
iteration, however we did not show that it achieve the O

(
1

(δk)p

)
convergence rate. Finding a way to show the convergence rate
would be of interest.

2 Runge-Kutta seems to be stable for more iterations than the naive
method. It would be of interest to expand our approach to
determine when a nth order Runge-Kutta discretization diverges.

3 It would be interesting to apply this method to general convex
functions by using linear gradient approximations
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