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Abstract—We study discretizations of an Euler-Lagrange equa-
tion which generate a large class of accelerated methods whose
convergence rate is O( 1

tp
) in continuous-time, where parameter

p is the order of the optimization method. Specifically, we
address the question asking why a naive explicit-implicit Euler
discretization of this solution produces an unstable algorithm,
even for a strongly convex objective function. We prove that for
a strongly convex L-smooth quadratic objective function and
step size δ < 1

L
, the naive discretization will exhibit stable

behavior when the number of iterations k satisfies the inequality
k < ( 4

Lp2δp
)

1
p−2 .

I. INTRODUCTION

The phenomenon of acceleration is currently a heavily
researched topic in convex optimization. Su et. al. first explored
the concept of taking continuous time limits of optimization
methods in an attempt to better understand acceleration [5].
More recently, high resolution continuous-time ODEs have
been derived, and they shine light on how gradient correction
leads to a faster convergence rate [3]. This new perspective
has also motivated the use of various discretization schemes
on continuous-time problems to generate new families of
optimization algorithms [4].

Wibisono et. al. derived a second order Euler-Lagrange ODE
whose solution minimizes an objective function f at an expo-
nential rate with order p, for any distance generating function.
When attempting to discretize this ODE, the authors found
that the system of two update equations given by an explicit-
implicit Euler discretization of the ODE initially converges
to the minimizer of f , oscillates around the minimizer, and
eventually diverges as shown in Figure (1). This occurs even for
strongly convex quadratic functions and a Euclidian distance
generating function. The reason for divergence here is unclear.
In their work, the authors solve the problem of instability by
introducing a rate matching discretization, which utilizes a
third update sequence. However, as evident for the p = 3 case,
the implementation of this third sequence is difficult [2].

Recently, there have been explorations of the convergence
rates and stability of various discretization methods. We adopt
ideas from numerical analysis and recent work on stabilizing
gradient descent to analyze the end behavior of the explicit
and implicit Euler method applied to the Euler-Lagrange ODE
[1]. We hope that this work will provide better insight into the
behavior of the explicit-implicit discretization scheme and also
provide easier-to-implement alternatives to the rate matching
discretization.

Fig. 1: The explicit-implicit Euler method (naive discretization)
eventually diverges

A. Problem Setting

Throughout this paper, we consider the optimization problem

x∗ = arg min
x∈Rd

f(x), (I.1)

where f(x) = 1
2 (x − x∗)TA(x − x∗) is a convex function

f : Rd → R with some unique minimizer x∗ that satisfies the
optimality condition∇f(x∗) = Ax∗ = 0, and A is a symmetric
d × d matrix. We mainly focus on the quadratic objective
function as the linear gradient allows for easier analysis. The
importance of minimizing quadratic objective functions has
many applications in machine learning, such as a least squares
loss function for a neural network.

B. A Continuous Time Solution

Wibisono et. al. derived the following Euler-Lagrange ODE,
whose solution minimizes f at an exponential rate [6]. When
in the Euclidean setting, this ODE is

Ẍt +
p+ 1

t
Ẋt + Cp2tp−2∇f(Xt) = 0 (I.2)

where Xt := X(t), C > 0 is a constant, and p ≥ 2 is the
parameter which describes the order of the optimization method.
Let X∗ be the minimizer of the objective function f . The
authors show that in continuous time, (I.2) has the convergence
rate of

f(Xt)− f(X∗) < O

(
1

tp

)
.

(I.3)

If p = 2, equation (I.2) is the continuous time limit of
Nesterov’s method derived by Su et. al. [5]. When p = 3,
equation (I.2) is the Euclidean case of the continuous time
limit of cubic-regularized Newtons method [2]. Due to the order
p exponential convergence rate of this Euler-Lagrange ODE,



it is of interest to derive a discretization of this ODE with a
convergence rate that matches the one given in (I.3). However,
as mentioned previously, the explicit-implicit discretization
eventually diverges even for a strongly convex quadratic
objective function. Note that (I.2) can also be written as a
system of two first order ODEs

Ẋt =
p

t
(Zt −Xt)

Żt = −Cptp−1∇f(Xt).
(I.4)

II. OUR APPROACH

In this section, we describe the approach that we take to
analyze the behavior of various discretizations of the Euler-
Lagrange ODE. We are primarily interested in determining
whether a system of update equations given by a certain
discretization scheme has converging, diverging, or stable
long-term behavior. To be precise, we give the following
definitions. In this paper, a system of update equations given
by a discretization method is

(a) converging to the minimizer if the upper bound on |xk−
x∗| is decreasing as k increases, 1

(b) diverging from the minimizer if the upper bound on
|xk − x∗| is increasing as k increases, and

(c) stable if, for sufficiently large N , |xk−x∗| = |xk+1−x∗|
for all k > N .

Oftentimes, an optimization problem has very large dimensions;
that is x, the value that we are updating, is multi-dimensional.
For our purposes, however, the analysis of a system of update
equations on one-dimensional x is sufficient to study the
behavior of a certain discretization scheme applied to the
Euler-Lagrange ODE. This is stated more formally and proved
in the following proposition.

Proposition II.1. In order to study the stability of update
equations derived from various discretization methods, we can
focus on cases where x is one-dimensional without loss of
generality.

Proof. We rewrite f(x), a general objective function where x
is d-dimensional and A is symmetric, as follows:

f(x) =
1

2
(x− x∗)TA(x− x∗)

=
1

2
(x− x∗)TPDPT (x− x∗)

=
1

2
(PT (x− x∗))TDPT (x− x∗)

=
1

2
x̃TDx̃

where x̃ := PT (x − x∗), P is the matrix of eigenvectors of
A, and D is the diagonal matrix of eigenvalues of A.

Since all dimensions of x̃ update independently of each
other, the case where x̃ and x are one-dimensional is without
loss of generality.

1Note that |xk − x∗| does not have to be a monotonically decreasing
sequence in order to be converging.

We now make several definitions which help us set up the
framework that we will use to analyze various discretizations

of the Euler-Lagrange ODE. We let ui :=

[
x̃i
zi

]
, where x̃

is defined as in the proof of Proposition 2.1, and consider
discretizations of the Euler-Lagrange ODE of the form

uk+1 =Mkuk. (II.1)

Additionally, we define M∞ := limk→∞Mk and u∞ :=
limk→∞ uk. Finally, we define the stability function, which
tells us the end behavior of systems of update equations in the
form given by equation (II.1). Proposition (II.2) shows how
the stability function determines end behavior.

Definition II.1. We define R(Mk) := |λk,max| where λk,max

is the eigenvalue of Mk with the largest magnitude, and the
stability function is given by

R(M∞) = lim
k→∞

R(Mk)

Proposition II.2. A discretization method will be

(a) converging to the minimizer when R(M∞) < 1.
(b) stable when R(M∞) = 1.

Proof. Computing uk from u0, we have

uk =Mk−1Mk−2 . . .M1M0u0. (II.2)

When all the eigenvalues of Mi have magnitude less than 1,
then ‖ui‖ < ‖ui−1‖. Since ‖x̃i‖ ≤ ‖ui‖, the upper bound
on ‖x̃i‖ is also strictly decreasing when all eigenvalues’
magnitudes are less than 1. Letting k go to ∞ proves part (a)
of the proposition.

When R(M∞) = 1, the part of x∞ that lies along the
eigenvector of M∞ associated with the eigenvalue(s) equal
to 1 will always remain the same size. Parts of x∞ that lie
along other eigenvector(s) will go to 0. Thus, the value of xk
for sufficently large k will not change, and the iterations are
stable.

III. EXPLICIT-IMPLICIT EULER METHOD

The update equations given by the discretization of (I.4)
using a explicit-implicit Euler method and the identification
t = δk are

xk+1 − xk
δ

=
p

t
(zk − xk)

zk − zk−1
δ

= −Cptp−1∇f(xk).
(III.1)

This set of update equations eventually diverges after
approaching and oscillating around the minimizer, yet it is
unknown why this occurs [6]. We present the following
theorem, which describes the behavior of the explicit-implicit
discretization, and an outline of our proof.

Theorem III.1. Let f(x) : Rd −→ R be an L-smooth function
defined as

f(x) =
1

2
(x− x∗)TA(x− x∗) (III.2)



where x∗ ∈ Rd is the unique minimizer with ∇f(x∗) = ~0 and
A is a positive definite, symmetric d×d matrix. Let δ < 1

L and
ε = δp. Then, after we go out enough iterations in the system
of update equations given by equation (III.1) such that k > p
and take C < 1

εL , we have the following properties:

(a) If p = 2, the naive method exhibits stable end behavior.
(b) If p > 2, the naive method will exhibit stable behavior

when

k <

(
4

CLp2ε

) 1
p−2

.

Proof. In Proposition II.1, we showed that the case where x
and x̃ are one-dimensional case is without loss of generality.
Thus, we begin by considering the problem f(x) = 1

2A(x−
x∗)2 = 1

2A(x̃)
2 where x and x̃ are one-dimensional, and later

generalize our results to d-dimensional x. We now define the
update equations as done in II.1 where

Mk =

[
1− p

k
p
k

−Cpε(k + 1)p−1(k−pk )A 1− Cpε(k + 1)p−1( pk )A

]
.

Next, we analyze the end behavior of the this algorithm for
various p by looking at the eigenvalues of M∞ = limk→∞Mk

for one-dimensional x and determining the stability function.
Case 1, p = 2. We solve for the eigenvalues of M∞ by setting
the characteristic polynomial of this matrix equal to 0. In the
characteristic equation, we omit terms that go to 0 as k →∞.
We have

0 = det(M∞ − λI)
= λ2 + λ(4CεA− 2) + 1.

Now, let c = 4CεA > 0. Since we make the assumption that
C < 1

εL , we have that C < 1
εA for a one dimensional problem.

Thus, we have c < 4. This gives the following eigenvalues:

λ1 =
−c+ 2 +

√
c2 − 4c

2
=

2− c
2

+

√
4c− c2i

2

λ2 =
−c+ 2−

√
c2 − 4c

2
=

2− c
2
−
√
4c− c2i

2
.

Because |λ1| = |λ2| = 1, the stability function R(M∞) = 1.

Thus,
[
x̃∞
z∞

]
will be stable when p = 2.

Case 2, p > 2. We solve for the eigenvalues of M∞, once
again omitting terms in the characteristic equation that go to 0
as k →∞. We have

0 = det(M∞ − λI)

= lim
k→∞

(
λ2 + λ(Cp2εkp−2A− 2) + 1

)
= λ2 + λ(c− 2) + 1,

where c = limk→∞ Cp2εkp−2A. Thus we have the eigenvalues

λ1 =
−c+ 2 +

√
c2 − 4c

2
, λ2 =

−c+ 2−
√
c2 − 4c

2
.

Note that R(M∞) = |λ2| � 1. Thus, the solution for
[
x̃∞
z∞

]
is

unstable. In order to determine on which iteration the explicit-
implicit method starts to diverge for each p > 2, we find the
eigenvalues of Mk. Let ak = p

k and let bk = Cpε(k+1)p−1A.
This gives us

Mk =

[
1− ak ak

−bk + akbk 1− akbk

]
.

The characteristic equation for Mk is

λ2 + λ(akbk + ak − 2) + (1− ak) = 0

which gives the eigenvalues

λ1 =
−akbk − ak + 2 +

√
(akbk + ak − 2)2 − 4(1− ak)

2

λ2 =
−akbk − ak + 2−

√
(akbk + ak − 2)2 − 4(1− ak)

2
.

In order to determine which of the eigenvalues describe the
divergence, we make the following claims.
Claim 1. After going out enough iterations such that k > p,
we never have divergence when |λ1| = |λ2|.

Proof of Claim 1. We only have |λ1| = |λ2| when the eigen-
values are complex or when the eigenvalues are the same real
value. That is |λ1| = |λ2| implies

(akbk + ak − 2)2 − 4(1− ak) ≤ 0. (III.3)

When (III.3) is true, the eigenvalues can be written as

λ1 =
−akbk − ak + 2

2
+

√
4(1− ak)− (akbk + ak − 2)2

2
i

λ2 =
−akbk − ak + 2

2
−
√
4(1− ak)− (akbk + ak − 2)2

2
i.

Thus, the magnitudes of these eigenvalues are equivalent.
Simplifying the magnitude, we get

|λ1| = |λ2| =
√
1− ak

=

√
1− p

k

< 1.

Claim 2. We never have divergence when |λ1| > |λ2|.

Proof of Claim 2. In order to have |λ1| > |λ2|, we must have
−akbk − ak + 2 > 0. Suppose for the sake of contradiction
that we have |λ1| > 1 which implies −akbk − ak +2 > 0 and
λ1 > 0. Then we have

|λ1| > 1

(akbk + ak − 2)2 − 4(1− ak) > (akbk + ak)
2

−4akbk > 0. ⇒⇐

By Claim 1 and Claim 2, we can only have divergence when
|λ2| > |λ1| =⇒ −akbk − ak + 2 < 0. Thus, it is enough to



look at the magnitude of λ2, when it is real, to determine
when divergence happens. Therefore we have divergence when
|λ2| > 1. Through algebraic simplification, we can equivalently
say that divergence occurs when

akbk + ak +
√

(akbk + ak − 2)2 − 4(1− ak) > 4. (III.4)

Our goal is to get an expression that determines the number
of iterations k allowed for a given p, ε, and A. To do so, we
begin with the inequality (III.4). Note that we can rewrite this
as

akbk + ak +
√
(akbk + ak)2 − 4akbk > 4.

Now let x = akbk and y = akbk + ak = x + ak. We have
that the iterations of the update equation will be converging or
stable when

y +
√
y2 − 4x ≤ 4.

To simplify this inequality, we consider a right triangle with
hypotenuse y and sidelengths s1 = 2

√
x and s2 =

√
y2 − s21 =√

y2 − 4x. A visual representation of this triangle is shown
below. Our inequality for when convergence or stability is
achieved becomes

y + s2 ≤ 4.

By the Triangle Inequality, y + s2 ≤ 4 implies s1 < 4. Thus,
we have that stability or convergence is achieved when

s1 < 4

akbk < 4
p

k
Cpε(k + 1)p−1A < 4

k <

(
4

CAp2ε

) 1
p−2

.

Finally, we generalize the one-dimensional result to a d-
dimensional problem. Consider the following problem where
x and x̃ are d-dimensional vectors. Written as in Proposition
II.1, we have

f(x) =
1

2
(x− x∗)TA(x− x∗) = 1

2
x̃TDx̃.

This d-dimensional problem will be converging to the min-
imizer or stable when each of its dimensions are doing so.
Thus, iterations are converging or stable when k satisfies

k <

(
4

CDip2ε

) 1
p−2

for all integer i in the range 1 to d, inclusive. From this, it
is easy to see that the largest eigenvalue of A dictates when
the iterations become unstable. Thus, if f(x) is L-smooth, the
explicit-implicit method will exhibit stable behavior when

k <

(
4

CLp2ε

) 1
p−2

.

IV. NUMERICAL RESULTS AND DISCUSSION

For the case where δ = .01, L = 10, p = 4, Theorem III.1
says that the explicit-implicit method should be stable when
k < 1, 582. Figure (2) below visualizes the effect of this bound
and compares the convergence rate to Nesterov’s accelerated
gradient descent for convex functions.

Fig. 2: Naive discretization diverging at predicted bound

In addition, we have identified several possible future
directions to take. Empirically, we see that a fourth-order
Runge-Kutta discretization of the Euler-Lagrange ODE is able
to run for more iterations than the explicit-implicit method
before it begins to diverge. For this reason, it would be of
interest to use some of the approaches discussed in this paper
to bound the number of iterations of guaranteed stable behavior.
Furthermore, while we showed where the explicit-implicit
method is converging, we have not showed that this convergence
rate matches that of the Euler-Lagrange ODE. Showing that
each of the discretization methods discussed in this paper
achieves the O

(
1
tp

)
convergence rate before they diverge could

result in a more useful algorithm. We also note that our current
analysis restricts the objective function to be quadratic and is
only analyzed in the Euclidean setting. It would be of interest
to expand our analysis to a more general context.
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