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Problem Setting

We consider the optimization problem

x∗ = arg min
x∈Rd

f (x), (1)

where f (x) = 1
2(x − x∗)TA(x − x∗) is a convex function f : Rd → R with some unique

minimizer x∗ ∈ Rd that satisfies the optimality condition ∇f (x∗) = Ax∗ = ~0, and A is a
positive definite, symmetric d× d matrix.

Convergence and Discretization of Euler-Langrange ODE

Theorem 2.1 from [1]. Let p and C be constants such that p ≥ 2 and C ≥ 0. Then the
Euler-Lagrange ODE

Ẍt +
p + 1

t
Ẋt + Cp2tp−2∇f (Xt) = 0. (2)

has the convergence rate

f (Xt)− f (x∗) ≤ O

(
1

tp

)
. (3)

Naive Discretization (Algorithm 1). Let the identification between continuous and
discrete time be defined by t = kδ. The forward-backward Euler Discretization of the
Euler-Lagrange (2) is given by the update equations

zk = zk−1 − Cp(δk)p−1∇f (xk) (4)

xk+1 =
p

k
zk +

k − p
k

xk. (5)

Research Goals and Approach

Motivation. In [1], it was noted that Algorithm 1 eventually diverges after approaching
and oscillating around the minimizer, yet it is unknown why this occurs. (See figure
below)

Research Goals
1. Understand in what cases the Naive

Discretization converges, and on what
iteration it shoots off to infinity in cases
where it diverges.

2. Develop methods of analysis that allow
us to determine where divergence
occurs in a given optimization algo-
rithm.

Approach. To analyze convergence, we rewrite the update equations from Algorithm 1
in matrix form.[

xk+1
zk+1

]
=

[
(1− p

k)I p
kI

−Cpε(k + 1)p−1(k−pk )A I − Cpε(k + 1)p−1(pk)A

]
︸ ︷︷ ︸

Mk

[
xk
zk

]
.

(6)

Main Theorem

Theorem. Let f (x) : Rd −→ R be an L-smooth function defined as

f (x) =
1

2
(x− x∗)TA(x− x∗) (7)

where x∗ ∈ Rd is the unique minimizer with ∇f (x∗) = ~0 and A is a positive definite,
symmetric d× d matrix. Let δ < 1

L and ε = δp. Then, after we go out enough iterations in
the system of update equations given by Algorithm 1 such that k > p and take C < 1

εL,
we have the following properties:

1. If p = 2, the naive method exhibits stable end behavior.
2. If p > 2, the naive method will exhibit stable behavior when

k <

(
4

CLp2ε

) 1
p−2

.

Sketch of Proof

Reducing The Problem to a One-Dimensional Problem
We rewrite f (x) as follows:

f (x) =
1

2
(x− x∗)TA(x− x∗) =

1

2
x̃TΣx̃ (8)

where x̃ = UT (x− x∗), U is the matrix of eigenvectors of A, and Σ is the diagonal matrix
of eigenvalues of A.

Without loss of generality, we study the case where x is one-dimensional since all
dimensions of x̃ update independently of each other. In particular, we focus on the
dimension associated with the largest eigenvalue, which is equal to L.

Relationship Between the Eigenvalues of Mk and the Iterates

We define ui :=

(
x̃i
zi

)
. Computing uk from u0, we have

uk = MkMk−1 . . .M2M1u0 (9)

When the all eigenvalues of Mi have magnitude less than 1, then ‖ui‖ < ‖ui−1‖. Since
‖x̃i‖ ≤ ‖ui‖, the upper bound on ‖x̃i‖ is also strictly decreasing when all eigenvalues’
magnitudes are less than 1.

Eigenvalue Analysis
To determine eventual convergence or divergence, we analyze the eigenvalues of
M∞ = limk→∞Mk.

For the p = 2 case, we find that the magnitudes of the eigenvalues of Mk start out less
than 1, and converge to 1 as k →∞.

For the p > 2 case, the magnitudes of the eigenvalues go to infinity as k → ∞. The
magnitude of the eigenvalue with larger magnitude becomes greater than 1 soon after
the Kth iteration, where K := p−2

√
4

Lp2ε
. That is where the iterations stop converging and

start diverging.

Numerical Results

L δ Iteration k of divergence

10 .01 44,445
10 .001 44,444,445

100 .01 4,445
100 .001 4,444,445

For p = 3

L δ Iteration k of divergence

10 .01 1,582
10 .001 158,113
100 .01 500
100 .001 50,000

For p = 4

Discussion and Future Direction

1. The Euler-Lagrange ODE performs better than Nesterov’s when p > 3. However, a
higher p allows for less iterations.

2. In [1], it is shown that there is a convergent rate-matching discretization of the Euler-
Lagrange by adding a third sequence. It is of interest to study why adding the third
update sequence removes the problem seen with the Naive Discretization.

3. Below, we see that a fourth order Runge Kutta discretization of the Euler-Lagrange
performs better than Nesterov’s for p ≥ 3 but eventually diverges. It would be of
interest to do a similar analysis on this discretization scheme in future research.
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