Analyzing an Agent-Based Model for House-Hunting in Ant Colonies

Emily Zhang, Jiajia Zhao, Nancy Lynch Massachusetts Institute of Technology

The House-Hunting Algorithm

- Model captures biological measurements from empirical studies (Zhao, Lynch, Pratt, 2020)
 - Bio-plausible
 - Predicts less studied behaviors of ants
- **Challenge:** Lack theoretical bounds on the running time of the algorithm

Phase transitions of an ant

Simplifications

setf.nome_nest = _nome_nest # default to 0
self.candidate_nest = _candidate_nest
self.transitioned = _transitioned
self.location = _home_nest
self.phase = "E" # how much ant is committed to the candidate nest
self.old_candidate_nest = -1 # only used for reject action
self.terminate = 0

After

Adjustable Parameters

Parameter	Value	Source
quality coefficient μ_q	0.25	trial-and-error from $[13]$
population coefficient μ_p	0.35	trial-and-error from $[13]$
quorum threshold θ	0.15	[9, 2]
search constant c_s	0.025	trial-and-error from [13]
follow constant c_f	0.4	[4, 8]
lead forward constant c_ℓ	0.6	trial-and-error from $[13]$
transport constant c_t	0.7	[10]
λ	8	trial-and-error from $[13]$

State Transitions

$$\begin{aligned} &\Pr[\mathbf{u} = \operatorname{advance} \mid a.state = \operatorname{At} \operatorname{Nest}_i] = \left(1 + e^{-\lambda \left(\mu_q \cdot q + \mu_p \cdot \frac{p}{n}\right)}\right)^{-1} \text{ for } i \in \{\operatorname{E}, \operatorname{C}, \operatorname{T}\} \\ &\Pr[\mathbf{u} = \operatorname{advance} \mid a.state = \operatorname{Search}_i] = c_s \cdot \left(1 + e^{-\lambda \left(\mu_q \cdot (q' - q) + \mu_p \cdot \frac{p' - p}{n}\right)}\right)^{-1} \text{ for } i \in \{\operatorname{E}, \operatorname{C}, \operatorname{T}\} \\ &\Pr[\mathbf{u} = \operatorname{advance} \mid a.state = \operatorname{Quorum} \operatorname{Sensing}] = \begin{cases} 1 & \text{if quorum has been met} - \text{ that is, } p_a > \theta \cdot n_a \\ & \text{and } a.location \text{ has not dropped out of competition} \\ 0 & \text{otherwise} \end{cases} \\ &\Pr[\mathbf{u} = \operatorname{advance} \mid a.state = \operatorname{Transport}] = c_t \end{aligned}$$

q'

$$\Pr[\mathbf{u} = \text{advance} \mid a.state = \text{Lead Forward}] = \begin{cases} c_{\ell} & \text{if } q > q' \\ 0 & \text{otherwise} \end{cases}$$

House-Hunting Algorithm

Algorithm 1: One Round of the HOUSEHUNTING Algorithm		
1 M : a set of ants, initially \emptyset		
2 for $i = 1$ to n_a do		
3 if $a_{P(i)} \notin M$ then		
4	$action, n' := $ select_action $(a_{P(i)})$	
5	$a' := \mathbf{select_ant}(\mathbf{a_{P(i)}}, \mathbf{n'}, \mathbf{action})$	
6	if $a' \in M$ then	
7	$ a' \leftarrow null$	
8	$transition(a_{P(i)}, a', n', action)$	
9	$M := M \cup \left\{ a_{P(i)} \right\} \cup \left\{ a' \right\}$	

A Lower Bound on Number of Rounds Required

Proof inspired by Ghaffari, Musco, Radeva, Lynch, 2015.

Method:

- Lower bound the probability that a constant fraction of the ants goes to the new nest on any given round.
- Chernoff Bound

Result:

• An algorithm with *n* ants requires $\Omega(\log n)$ rounds to converge with high probability.

Theorem 4.4. If the quorum threshold satisfies $1 - \frac{a(\epsilon)}{n_a} < \theta < \frac{a(\epsilon)}{n_a}$, then $\mathbb{E}[R_{\epsilon}] = O(\log n)$.

$$n_a =$$
 the number of active ants
 $a(\epsilon) \approx n_a \left(\frac{1-\epsilon}{1+e^{-\lambda(\mu_q(q_1-q_0)-\mu_p)}}\right)$

Theorem 4.4. If the quorum threshold satisfies $1 - \frac{a(\epsilon)}{n_a} < \theta < \frac{a(\epsilon)}{n_a}$ then $\mathbb{E}[R_{\epsilon}] = O(\log n)$.

 $n_a =$ the number of active ants $a(\epsilon) \approx n_a \left(\frac{1-\epsilon}{1+e^{-\lambda(\mu_q(q_1-q_0)-\mu_p)}}\right)$

Lower bound: transports to inferior nest taper off **Upper bound**: transports to superior nest begin in O(log n) rounds

Theorem 4.4. If the quorum threshold satisfies
$$1 - \frac{a(\epsilon)}{n_a} < \theta < \frac{a(\epsilon)}{n_a}$$
, then $\mathbb{E}[R_{\epsilon}] = O(\log n)$.

$$n_a =$$
 the number of active ants
 $a(\epsilon) \approx n_a \left(\frac{1-\epsilon}{1+e^{-\lambda(\mu_q(q_1-q_0)-\mu_p)}}\right)$

Lower bound: transports to inferior nest taper off **Upper bound**: transports to superior nest begin in O(log n) rounds

$$\begin{split} \lambda &= 8, \ \mu_q = .25, \ \mu_p = .35, \ q_1 = 3, \ q_0 = 0, \ \epsilon = .00001 \\ \theta &\in (.0392, .9608) \quad \text{(reasonable bounds)} \\ \theta &\approx .15 \end{split}$$

Theorem 4.4. If the quorum threshold satisfies
$$1 - \frac{a(\epsilon)}{n_a} < \theta < \frac{a(\epsilon)}{n_a}$$
 then $\mathbb{E}[R_{\epsilon}] = O(\log n)$.
 $n_a = \text{the number of active ants}$
 $a(\epsilon) \approx n_a \left(\frac{1-\epsilon}{1+e^{-\lambda(\mu_q(q_1-q_0)-\mu_p)}}\right)$
Lower bound: transports to inferior nest taper off
Upper bound: transports to superior nest begin in O(log n)
rounds

Future Work:

1. Generalize this result to environments with multiple nests

$$1 - \frac{a(\epsilon)}{n_a} < \frac{a(\epsilon)}{n_a} \implies q_1 - q_0 > \frac{\mu_p}{\mu_q}$$

Test this prediction about the relative qualities of nests in real experiments with ants

Implications

- Gain a better understanding of the biological behavior of ants.
- Studying biologically-inspired algorithms can help engineer better distributed computer systems.
 - Robot swarms

Thank you. Questions?