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Abstract

We examine multisets of n numbers x1, x2, . . . , xn in the interval [0, 1] that maximize the
product of the elements in the multiset, with the property that for any α,

∑
α≤xi<2α xi ≤ 1.

Because the answer depends strongly on n, we begin by investigating what happens for specific
values of n. We then provide upper and lower bounds for the value of the product for larger n.
Additionally, we consider two modified versions of this problem: a restricted version where all
elements must be unit fractions and a relaxed version where non-integral copies of elements are
allowed in the multisets.

1 Introduction

In this paper, we investigate the maximal product of sets of numbers in the interval [0, 1] where
the sum of the numbers within various subintervals is constrained by an upper bound. The effect
of such a constraint is that the elements must be spread throughout the interval [0, 1], while the
maximization of the product compels the numbers to be close to 1. More formally, the maximization
of the objective can be achieved by studying the multiset (a set that allows for multiple instances
of its elements) S(n) defined as follows.

Definition 1.1. The multiset S(n) for any positive integer n is a multiset of n numbers x1, x2, . . . , xn ∈
[0, 1] that maximizes

n∏
i=1

xi

with the property that for any α, ∑
α≤xi<2α

xi ≤ 1.

Correspondingly, P (n) is the product of the elements of S(n).

One way we might attempt to maximize the product is by selecting elements greedily, that is, se-
lecting the largest element possible on each step until we have n elements. For example, for n = 10,
we choose the first element to be 1. Then, we cannot include any other elements in the interval
(12 , 1] because any such element 1

2 < e1 ≤ 1 would be in a shared interval [e1, 2e1) with the element
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1, and e1 + 1 is clearly greater than 1. The next largest element we can add is 1
2 , and we can add

two copies of 1
2 without breaking the constraint. Similar to before, we cannot include any other

elements in the interval (14 ,
1
2 ] because any such element 1

4 < e2 ≤ 1
2 would be in a shared interval

of [e2, 2e2) with the two 1
2 ’s, and the sum in that interval would exceed 1. We continue by adding

four 1
4 ’s and finish up the ten elements with three 1

8 ’s.

This multiset,
{

1, 12 ,
1
2 ,

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
8 ,

1
8 ,

1
8

}
is an example of a feasible multiset for n = 10, where a

feasible multiset is a multiset that satisfies the sum constraint from Definition 1.1.

We notice that a greedy feasible multiset consists of 2i copies of the element 1
2i

for every distinct

element 1
2i

in the multiset, except for the smallest distinct element. The smallest distinct element

only follows this pattern when n = 2k − 1 for positive integer values of k. In Section 2, we explore
S(2k − 1) for small values of k. We further conjecture a closed form description of P (2k − 1) and a
corresponding S(2k − 1).

With further investigation of values of general n that are not necessarily of the form 2k − 1, we
discover that for some n we can create feasible multisets whose elements have a larger product than
the elements of the greedy multisets. For n = 70, we see that one such improved feasible solution
contains one copy of 1, two copies of 1

2 , four copies of 1
4 , nine copies of 1

9 , eighteen copies of 1
18 ,

and thirty-six copies of 1
36 . This shows that for general n, the greedy feasible multiset is not always

optimal.

In Section 3, we continue to explore S(n) for general n and provide upper and lower bounds on
P (n). We also analyze the asymptotic behavior of the negative log of the function P (n), taking the
negative log because P (n) is shrinking rapidly in n. We find that the negative log of P (n) grows
as n log n.

In Section 4, we wish to computationally generate S(n) for more values of n, so we attempt to
formulate the original problem as a linear program. However, the original problem contains an
infinite number of constraints. In order to translate the problem into a linear program, we add the
additional constraint that all elements of S(n) must be unit fractions, i.e. fractions taking the form
1
z where z is an integer. This new restricted problem is formalized as follows.

Definition 1.2 (Restricted Problem). The multiset S′(n) for any positive integer n is a multiset
of n unit fractions x1, x2, . . . , xn ∈ [0, 1] that maximizes

n∏
i=1

xi

with the property that for any α, ∑
α≤xi<2α

xi ≤ 1.

Correspondingly, P ′(n) is the products of the elements of S′(n).

In our initial explorations of computational results, it appeared that the sum of the occurrences of
each distinct element (except possibly the smallest element) in S′(n) is 1, and that the value of the
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(k + 1)th largest distinct element was at most half the value of the kth largest distinct element.
The smallest value of n that disproves either notion is n = 138. S′(138) contains one copy of 1, two
copies of 1

2 , four copies of 1
4 , eight copies of 1

8 , eight copies of 1
16 , nine copies of 1

18 , sixteen copies
of 1

32 , eighteen copies of 1
36 , thirty-two copies of 1

64 , thirty-six copies of 1
72 , and four copies of 1

128 .
In S′(138) we see that the sum of the elements equal to 1

16 is 1
2 , and that 1

18 >
1
2 ×

1
16 . Computing

S′(n) for larger values of n reveals that in general, we find that S′(n) is often different from the
greedy feasible multiset when n is far from a power of 2.

Additionally, we take the dual of the primal linear program of the original problem and construct
a feasible solution to the dual for n = 2k − 1 for any positive integer k. By Weak Duality, the
objective that the feasible solution to the dual achieves is an upper bound on P ′(n).

In Section 5, we examine another modified version of the problem. Here, we relax the constraint
requiring the number of copies of each element in a multiset to be an integer. Instead, we now allow
fractional copies of elements, and as a result, there is an unbounded number of distinct elements.
This new relaxed problem is formalized as follows.

Definition 1.3 (Relaxed Problem). The multiset S′′(n) for any positive integer n is a multiset of
ni copies of xi for integer i ≥ 1 that maximizes

∞∏
i=1

(xi)
ni

with the property that for any α, ∑
α≤xi<2α

nixi ≤ 1,

and subject to the constraint that
∞∑
i=1

ni = n

Correspondingly, P ′′(n) is the product of the elements of S′′(n).

For this relaxed problem, we show that S′′(n) contains at least one element in all intervals of the

form [α, 2α) for all minS′′(n)
2 < α ≤ maxS′′(n), and we conjecture about the general form of the

solution to this relaxed problem.

2 Multisets S(n) where n = 2k − 1

In the introduction, we constructed feasible multisets by generating elements greedily. We notice
that each element in these greedy multisets takes the form 1

2i
. The greedy multiset contains 2i

copies of each element 1
2i

, except for the smallest element. When constructing the greedy multiset

for n = 2k − 1 for positive integer k, the smallest element also follows this pattern: the greedy
multiset contains 2k−1 copies of the smallest element 1

2k−1 because n = 2k−1 = 20 +21 + · · ·+2k−1.

We formalize the greedily constructed multiset for n = 2k − 1 as follows:

Definition 2.1. The multiset Gk consists of 2i copies of 1
2i

, for all integers 0 ≤ i < k.
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In this section, we examine S(2k − 1) for small integral values of k, and we then conjecture more
generally about this case. We begin with some lemmas that will reduce later casework. First, we
prove that 1 is always an element of S(n).

Lemma 2.2. For all positive integers n, S(n) contains the number 1.

Proof. For n = 1, the product is maximized when the multiset consists of the largest possible
element, 1. In the remainder of the proof, we consider n > 1.

Assume, for the sake of contradiction, that there exists a positive integer m such that c =
max (S(m)) < 1. We consider two cases for the value of c.

Case 1: If c ≤ 1
2 , we can replace any element in S(m) with 1 without violating the constraint and

increase the product of the multiset. Then, there exists a feasible multiset with a product larger
than P (m), so we have reached a contradiction.

Case 2: If 1
2 < c < 1, the second largest element in S(m) is at most max{ c2 , 1− c} <

1
2 . Because

all but the largest element in S(m) are less than 1
2 , we see that we can replace the largest element

c with 1 without violating the constraint. Then, we have constructed a feasible multiset with a
product larger than P (m), so we have reached a contradiction.

Now, we examine some feasible multisets for n = 2k − 1 that never have a greater product than
that of Gk. In order to examine the products of feasible multisets F , we define Q(F ) to be the
product of the elements of F .

Lemma 2.3. For any feasible multiset Fk with 2k−1 elements, such that the number of elements in
Fk in the interval

(
1
2i
, 1
]

is less than or equal to 2i−1 for all 0 < i < k, we have that Q(Gk) ≥ Q(Fk).

Proof. Given a distinct element 1
2i

in Gk, we know that there are 2i copies of that element. Further,

we know that there are 2i − 1 elements larger than 1
2i

in Gk. So, the (2i)th to
(
2i+1 − 1

)
th largest

elements in Gk are equal to 1
2i

.

From the condition on Fk, we know that the
(
2i
)
th largest element of Fk is at most 2i. So, the

(
2i
)
th

to the
(
2i+1 − 1

)
th largest elements of Fk are less than or equal to the corresponding elements of

Gk, for all integers 0 < i < k. Thus, when Fk and Gk are sorted, every element in Fk is less than
or equal to the corresponding element in Gk, so Q(Gk) ≥ Q(Fk).

We also note that since Gk is a feasible multiset for n = 2k − 1, we can use the product of its
elements to lower bound P

(
2k − 1

)
.

Lemma 2.4. We have that P
(
2k − 1

)
≥ 2(2−k)2

k−2 for positive integer k.

Proof. The product P
(
2k − 1

)
must be at least as large as Q(Gk), so

P
(

2k − 1
)
≥ Q(Gk) =

k−1∏
i=0

(
1

2i
)
2i

=
1

2
∑k−1
i=0 i2

i
=

1

2(k−2)2k+2
= 2(2−k)2

k−2

using the fact that
∑k−1

i=0 i2
i = (k − 2)2k + 2 for k ≥ 1.
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We can show that for k = 1, k = 2, and k = 3, we have that S
(
2k − 1

)
= Gk. This supports the

following conjecture.

Conjecture 2.5. We propose that S
(
2k − 1

)
= Gk for all positive integer k, which implies that

Lemma 2.4 achieves equality, that is P
(
2k − 1

)
= 2(2−k)2

k−2.

Along with the evidence from small k shown below, we get computational evidence for this con-
jecture in our results from the linear program of the restricted version of the problem, where all of
the elements are unit fractions, in Section 4. By solving the linear program computationally, we
verify that S′

(
2k − 1

)
= Gk for k ≤ 8.

Proposition 2.6. For k = 1, the multiset S
(
2k − 1

)
= G1.

Proof. From Lemma 2.2, S(1) = {1}.

Proposition 2.7. For k = 2, the multiset S
(
2k − 1

)
= G2.

Proof. From Lemma 2.2, we know that the element 1 is included in S(3), so each additional element
is at most 1

2 . The multiset {1, 12 ,
1
2} is feasible. So S(3) must equal {1, 12 ,

1
2}, which is equivalent to

G2.

Proposition 2.8. For k = 3, the multiset S
(
2k − 1

)
= G3.

Proof. We proceed by contradiction. Assume for the sake of contradiction that S(7) 6= G(3). We
define intervals where the elements of S(7) could fall. We refer to NI as the number of elements in
S(7) that fall into interval I and sI as the sum of the elements in S(7) that fall into the same interval.

From Lemma 2.2, we know that the element 1 must be in S(7); it follows that N( 1
2
,1) = 0. This

leaves us with six elements to place in the interval
(
0, 12
]
.

By Lemma 2.3 the condition
N( 1

2i
,1
] > 2i − 1

must be satisfied for some 0 < i < 3. We have that N( 1
21
,1
] can contain at most one element, so

the condition can’t be satisfied for i = 1. Hence the condition must be satisfied for i = 2: we must
have N( 1

4
,1] > 3. Since 1 must be included in S(7), this inequality becomes N( 1

4
, 1
2 ] > 2. From the

sum constraint from Definition 1.1, we have that s( 1
4
, 1
2 ] ≤ 1. Then, since every element in

(
1
4 ,

1
2

]
is

greater than 1
4 , we can have at most three elements in this interval, so we have N( 1

4
, 1
2 ] = 3.

From this we can put an upper bound of 1
3 on the arithmetic mean of elements in

(
1
4 ,

1
2

]
. By

the Arithmetic Mean-Geometric Mean Inequality (AM-GM), the geometric mean of these three
elements is at most 1

3 . There are three elements remaining in S(7) that must all be bounded above

by 1
4 , so we can upper bound P (7) by 1

(
1
3

)3 (1
4

)3
, which implies that P (7) < Q(G3), so we have

reached a contradiction.
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3 Multisets S(n) for General n

In this section, we explore some upper and lower bounds for P (n) for general n in order to examine
the asymptotic behavior of P (n). Our lower bound on P (n) is derived from a greedy feasible
multiset we can construct for n, and our upper bound on P (n) is derived from upper bounds on
each element in S(n). We combine these upper and lower bounds to prove that the negative log of
P (n) grows as n log n. Further, we conjecture a tighter upper bound as an extension of Conjecture
2.5. Finally, we compare two feasible multiset candidates for S(n) and show that one always attains
a higher product than the other.

Lemma 3.1. For all positive integers n, P (n) is lower-bounded by 22·2
l(n)−(n+1)l(n)−2.

Proof. Given some integer n, we can construct a multiset L(n) greedily with n elements as follows:
our first 2l(n) − 1 elements are the elements of Gl(n), and the remaining n− 2l(n) + 1 elements are
1

2l(n)
. Since L(n) is feasible, P (n) is lower-bounded by the product of the terms of L(n), which is

22·2
l(n)−(n+1)l(n)−2.

Now we would like to upper-bound each element of S(n) by studying the capacity of specific
intervals.

Lemma 3.2. The ith largest element in S(n) is less than
(
1
2

)l(i)−1
for integer 2 ≤ i ≤ n.

Proof. The sum of the elements of S(n) that fall in the interval [(12)i+1, (12)i) is constrained to be
at most 1. We examine the elements that fit into each of these intervals. An element in the interval
[
(
1
2

)i+1
,
(
1
2

)i
) can be no smaller than

(
1
2

)i+1
, so there can be at most 1

( 1
2)
i+1 , or 2i+1 elements in

this interval.

Then,
[(

1
2

)i+j
,
(
1
2

)i)
can contain at most

∑j
k=1 2i+k elements. Setting i = 0, we have that the

interval
[(

1
2

)j
, 1
)

can contain at most
∑j

k=1 2k = 2j+1−2 elements, and the interval
[(

1
2

)j
, 1
]

can

contain at most 2j+1 − 1 elements. Thus, every element other than the 2j+1 − 1 largest elements

must be less than
(
1
2

)j
.

We can rewrite the statement above for the ith largest element by setting j to l(i) − 1: we have

that i ≥ 2l(i), then the ith largest element is less than
(
1
2

)l(i)−1
.

Using the above lemma, we may compute a strict upper bound on P (n) by combining the upper
bound on every element in S(n).

Lemma 3.3. For n ≥ 2, P (n) is strictly upper-bounded by 2n−n·l(n)+2l(n)+1−l(n)−3.

Proof. We have from Lemma 3.2 that the ith largest element in S(n) is strictly smaller than 21−l(n)

for 2 ≤ i ≤ n. Then we have that P (n) < Πn
i=22

1−l(i), which means that

lgP (n) <
n∑
i=2

(1− l(i)) = n− 1−
n∑
i=1

l(i).
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We have that

n∑
i=1

l(i) =

l(n)−1∑
j=1

2jj

+
(
n− 2l(n) + 1

)
l(n)

= nl(n)− 2l(n)+1 + l(n) + 2,

so
lgP (n) < n− nl(n) + 2l(n)+1 − l(n)− 3,

and therefore P (n) < 2n−nl(n)+2l(n)+1−l(n)−3.

Because the above bounds on P (n) take the form of a shrinking exponential, it is simpler to examine
the bounds on − lgP (n). To formalize asymptotic growth, we recall the formal definitions of Big
O, Big Ω, and Big Θ notation.

Definition 3.4. For functions f and g, when f(n) = O(g(n)), the function f(n) is bounded above
by k · g(n) for some constant k and large enough n. Similarly, when f(n) = Ω(g(n)), we have that
f(n) is bounded below by k · g(n) for some constant k and large enough n. When f(n) = O(g(n))
and f(n) = Ω(g(n)), then f(n) = Θ(g(n)).

Theorem 3.5. The growth of − lgP (n) is Θ(n lg n).

Proof. Examining the upper bound for P (n) from Lemma 3.3, we see that

− lgP (n) ≥ −n+ n · l(n)− 2l(n)+1 + l(n) + 3

≥ −n+ n · l(n)− 2l(n)+1

≥ −n+ n · l(n)− 2n

≥ n(l(n)− 3)

≥ n(lg n− 4)

= Ω(n lg n).

Examining the lower bound for P (n) from Lemma 3.1, we see that

− lgP (n) ≤ −2 · 2l(n) + (n+ 1)l(n) + 2

≤ (n+ 1)l(n) + 2

≤ (n+ 1) lg n+ 2

= O(n lg n).

Since − lgP (n) is both Ω(n lg n) and O(n lg n), we have that − lgP (n) = Θ(n lg n).

Given that the element-wise upper bound from Lemma 3.3 is created from the bounding of in-
dividual elements, we wonder if there exists a tighter upper bound that more fully accounts
for the constraints placed on elements in S(n) as a whole. Recall that Conjecture 2.5 predicts

that P
(
2k − 1

)
= 2(2−k)2

k−2. We can rewrite this expression for P
(
2k − 1

)
in terms of n to get

P (n) = 22n−(n+1) lg(n+1). This naturally leads to the following conjecture.

Conjecture 3.6. For n ≥ 1, P (n) is upper-bounded by 22n−(n+1) lg(n+1).
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Figure 1: The differences of the logs of the upper bounds to lgP ′(n) are much smaller for the
conjectured upper bound than for the element-wise upper bound.

This conjecture is true for the first 273 values of P ′(n), as verified computationally using the linear
program presented in Section 4. Furthermore, this conjectured bound is much tighter with respect
to P ′(n) than the element-wise upper bound as Figure 1 demonstrates.

We now explore two potential solutions to S(n), using Conjecture 2.5 as a starting point. One
solution is the greedy feasible multiset, while the other is only greedy through the first 2k−1 − 1
elements, where k = l(n), before switching to an alternate form.

Theorem 3.7. Let n = 2k − 1 + c, where 1 ≤ c < 2k−1. Consider two multisets A and B. Let
A be constructed as follows: the first 2k − 1 elements are the elements of Gk, and the remaining c
elements are 1

2k
. Let B be constructed as follows: the first 2k−1 − 1 elements are the elements of

Gk−1, and the remaining 2k−1 + c elements are 1
2k−1+c

. Then Q(A) > Q(B).

Proof. Because the largest 2k−1 − 1 elements of both multisets A and B are identical, we need to
examine only the products of the smallest 2k−1 + c elements of each multiset in order to show that
Q(A) > Q(B). Let the products of the smallest 2k−1 + c elements of A and B be denoted qA and
qB, respectively. Thus we wish to show that qA > qB. We can write qA as

qA =

(
1

2k−1

)2k−1

×
(

1

2k

)c
= 2−[(k−1)·2

k−1+c·k],

and we can write qB as

qB =

(
1

2k−1 + c

)2k−1+c

=
(

2k−1 + c
)−(2k−1+c)

.
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Define r =
q−1
A

q−1
B

. To show that qA > qB, we must show that r < 1 for all 1 ≤ c < 2k−1.

We have that

r =
2(k−1)2

k−1+kc

(2k−1 + c)2k−1+c
=

(
2k−1

2k−1 + c

)2k−1+c

· 2c

and to simplify this expression, we substitute 2k−1 with d to get

r = 2c
(

d

d+ c

)d+c
.

We can show that r < 1 for all 1 ≤ c < 2k−1 if we show that r < 1 when c = 1 and show that the
partial derivative of r with respect to c is always negative for 1 ≤ c < 2k−1.

When c = 1, the expression for r becomes 2
(

1− 1
d+1

)d+1
, which is well-known to be monoton-

ically increasing for d > 0 (d = 2k−1 ≥ 1 for our purposes, so the relevant part of the function
is always monotonically increasing) and convergent to 2

e as k increases. Thus r < 2
e < 1 when c = 1.

Since we’ve shown that r < 1 when c = 1, we now want to show that the partial derivative of r
with respect to c is negative. We find that the partial is

∂

∂c
2c
(

d

d+ c

)d+c
= 2c

(
d

d+ c

)d+c(
ln

2d

c+ d
− 1

)
.

When 1 ≤ c < d we have that 1 < 2d
c+d < 2 so

(
ln 2d

c+d − 1
)

is always negative. Since 2c
(

d
d+c

)d+c
is

always positive for c, d > 0, the partial 2c
(

d
d+c

)d+c (
ln 2d

c+d − 1
)

is always negative for 1 ≤ c < d.

Thus r < 1 for all c such that 1 ≤ c < d = 2k−1, and we have shown that qA > qB for all c such
that 1 ≤ c < 2k−1. Then for all n, we have that Q(A) > Q(B).

4 Restricting the Problem to Unit Fractions

In this section, we consider the restricted version of this problem described in Definition 1.2 in
which we restrict the multiset to only include elements of the form 1

c , for positive integer c. With
this additional constraint, we can easily formulate the problem as a linear program. Furthermore,
we note that we only have to consider elements 1, 12 ,

1
3 . . . ,

1
2n as possible elements in the multiset

S′(n) since all smaller terms will never be included as shown in the following lemma.

Lemma 4.1. For all x ∈ S′(n), we have that x ≥ 1
2n .

Proof. We prove this lemma by contradiction. Assume for the purposes of contradiction that there
exists an element x ∈ S′(n) such that x < 1

2n . We construct a multiset F (n) that is identical to
S′(n), except that the element x is replaced with x′ = 1

2n . The multiset F (n) is feasible unless
element x′ and some of the other elements in the interval

[
1
4n ,

1
n

)
sum to more than 1. However, any

n terms in the above interval must sum to less than 1. Thus, F (n) is feasible, and Q(F (n)) > P ′(n),
so we have reached a contradiction.
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For j = 1, . . . , 2n let variable pj indicate the number of times the fraction 1
j appears in S′(n).

We have that

P ′(n) =
2n∏
j=1

(
1

j

)pj
.

Below, we present the linear program that we use to compute P ′(n). First, we rewrite our objective
so that it is linear.

− lg(P ′(n)) = − lg

 2n∏
j=1

(
1

j

)pj =
2n∑
j=1

pj lg j.

We construct a primal linear program which defines the optimization problem whose solution is
S′(n):

min
2n∑
j=1

pj lg j

subject to

max(2n,2i−1)∑
j=i

pj ×
1

j
≤ 1 i = 1, . . . , 2n

2n∑
j=1

pj = n

pj ≥ 0 j = 1, . . . , 2n.

In order to bound the value of the objective of the primal, we construct the dual of the above
primal linear program:

max

(
2n∑
i=1

di

)
+ n× d(t)

subject to

 j∑
i=d j+1

2
e

di ×
1

j

+ d(t) ≤ lg j j = 1, . . . , 2n

di ≤ 0 i = 1, . . . , 2n

d(t) unrestricted in sign.

We notice that the direction of inequality of the first constraint of the dual is the same as that of
the primal. This is because the variables of the dual are restricted to be nonpositive, rather than
nonnegative as in standard form.

Since the primal is feasible and bounded, we know that the dual must be feasible. By Weak Duality,
any value that the objective of the dual can achieve is a lower bound on the objective of the primal,
which produces an upper bound on P ′(n).
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Lemma 4.2. The following is a feasible solution for the dual linear program for n = 2k − 1 for
some integer k. We define the function f(x) =

(
lg x− d(t)

)
x. Our solution is as follows:

d(t) = k − 1,

d2k−2 = f
(

2k−2
)
,

d2k−3 = f
(

2k−1−lg e
)
,

d2i = f
(
2i+1 − 1

)
for 0 ≤ i ≤ k − 4,

and all other variables of the dual are 0.

Proof. First, we can easily check that all variables other than d(t) are nonpositive.

Now, we check if the proposed solution to the dual satisfies the first dual constraint. Let j be any in-
teger in {1, 2, . . . , 2k−1−1}. Let z be the integer in {0, 1, 2, . . . k−2} such that j ∈ Iz = [2z, 2z+1−1].

We will demonstrate that the first dual constraint j∑
i=d j+1

2
e

di ×
1

j

+ d(t) ≤ lg j =⇒ f(j) ≥
j∑

i=d j+1
2
e

di

is satisfied for all j ∈ {1, 2, . . . , 2k−1 − 1}. Note that doing so suffices to finish the proof of the
lemma, since the condition is always satisfied for j > 2k−1−1 because lg j ≥ d(t) = k−1 for all such j.

The function f(x) decreases when x ∈
(

0, 2d
(t)−lg e

)
, reaches a minimum at x = 2d

(t)−lg e ≈ 2k−2.44,

and increases from that point onward. We split into cases based on the behavior of the function f
at different values of z.

Case 1: z = k−2. Then, j ∈ [2k−2, 2k−1−1]. The first dual constraint becomes f(j) ≥
∑j

i=d j+1
2
e
di.

The only term di in this sum that is nonzero is d2k−2 . Thus, in this case the first dual constraint
becomes f(j) ≥ d2k−2 = f(2k−2). Since f(x) is increasing on the interval

[
2k−2, 2k−1 − 1

]
, the

constraint is always satisfied in this case.

Case 2: z = k− 3. Then j ∈
[
2k−3, 2k−2 − 1

]
. The constraint becomes f(j) ≥ f

(
2k−1−lg e

)
. Since

f
(
2k−1−lg e

)
is the global minimum of f(x), the constraint is always satisfied in this case.

Case 3: z ≤ k − 4. Then j ∈
[
2z, 2z+1 − 1

]
. The constraint becomes f(j) ≥ f

(
2z+1 − 1

)
. Since

f(x) is decreasing on the interval
(
0, 2k−3 − 1

]
, the constraint is always satisfied in this case.

Now that we have found a feasible solution to the dual, we use the objective value that the dual
solution achieves to lower bound the optimal value of the objective of the primal linear program.

Theorem 4.3. For integer k ≥ 2 and n = 2k − 1, we have that P ′(n) is upper bounded by

22
k−2
(

2k−1

2k−1−lg e

)2k−1−lg e∏k−3
i=1

(
2k−1

2i−1

)2i−1
2(2k−1)(k−1)

.

11



Proof. For the dual solution given in Lemma 4.2, the objective value simplifies as follows:

J =

(
2n∑
i=1

di

)
+ n× d(t) =

k−3∑
i=1

[(
lg(2i − 1)− k + 1

) (
2i − 1

)]
+
(

lg
(

2k−2
)
− k + 1

)(
2k−2

)
+(

lg
(

2k−1−lg e
)
− k + 1

)(
2k−1−lg e

)
+
(

2k − 1
)

(k − 1)

=

k−3∑
i=1

[
lg

(
2i − 1

2k−1

)2i−1]
− 2k−2 + lg

(
2k−1−lg e

2k−1

)2k−1−lg e

+
(

2k − 1
)

(k − 1)

= lg

(
2(−2k−2)

(
2k−1−lg e

2k−1

)2k−1−lg e k−3∏
i=1

(
2i − 1

2k−1

)2i−1)
+
(

2k − 1
)

(k − 1).

By Weak Duality, J is a lower bound on the value of the objective function of the primal linear
program. The objective of the primal linear program is the negative log of the product P ′(n).
Thus, 2−J , which is equivalent to the expression given in the statement of the theorem, is an upper
bound on P ′(n).

We note that our previous upper bound on P (n) from Lemma 3.3 is also an upper bound on P ′(n),
since all feasible multisets for the modified problem are also feasible for the original problem. Then,
we can compare the upper bounds from Lemma 3.3 and Theorem 4.3 to the computed values of
P ′(n) for various values of n.

n k P ′(n) from Solving LP Lemma 3.3 Upper Bound Thm. 4.3 Upper Bound

3 2 P ′(3) = 1
4 P ′(3) ≤ 1 P ′(3) ≤ 0.52

7 3 P ′(7) = 9.77× 10−4 P ′(7) ≤ 6.25× 10−2 P ′(7) ≤ 1.06× 10−3

15 4 P ′(15) = 5.82× 10−11 P ′(15) ≤ 9.54× 10−7 P ′(15) ≤ 6.90× 10−11

255 8 lgP ′(255) ≈ −1538 lgP ′(255) ≤ −1284 lgP ′(255) ≤ −1460.66

Table 1: We see that the upper bound from Theorem 4.3 is much tighter than the upper bound
from Lemma 3.3. In fact, as n increases, the upper bound given by the theorem becomes orders of
magnitude smaller than the upper bound given by the lemma.

To visualize the relationship between the upper and lower bounds that we proved for P (n) in
Section 3 and the upper bound that we proved for P ′

(
2k − 1

)
in Theorem 4.3, we graph all of the

bounds along with the value of P ′(n) in Figure 2.
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Figure 2: This visualization shows the bounds derived throughout this paper, including the element-
wise upper bound on P (n) (from Lemma 3.2), the greedy lower bound on P (n) (from Lemma 3.1),
the upper bound on P ′(n) (from Theorem 4.3), and the value of P ′(n) computed from the primal
linear program.

We note that the greedy lower bound and actual P ′(n) somewhat overlap on the graph. We show
the difference between these two curves in Figure 3.

Figure 3: From this visualization, we see that the greedy lower bound becomes a tight lower bound
on P ′(n) at and around powers of 2.
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The graphs show that P ′(n) fall between the upper and lower bounds that we proved for P (n).
Additionally, the values of S(1), S(3), and S(7) that we proved in Section 2 provide further evidence
that the products P ′(n) and P (n) may be the same for all positive integer n. This leads us to the
following conjecture.

Conjecture 4.4. For all positive integers n, the multiset S(n) only consists of unit fractions.

5 Relaxing the Problem to Non-Integer Copies

We seek to relax the constraint that elements must appear in integral numbers of copies from our
original problem due to the difficulties that arise when dealing with arbitrarily small modifications
to discrete quantities. By allowing for a non-integral number of copies, we have increased fluidity in
varying the value and multiplicity of elements by arbitrarily small amounts. This fluidity makes it
easier for us to prove that some multisets are suboptimal because we can vary them by sufficiently
small degrees to increase their products. Then, we can prove the following theorem for the relaxed
problem described in Definition 1.3:

Theorem 5.1. For any positive integer n and all α such that minS′′(n)
2 < α ≤ maxS′′(n), the

interval Iα = [α, 2α) contains at least one element.

Proof. We proceed by contradiction. Assume for the sake of contradiction that S′′(n) contains
some interval [α, 2α) with no elements. Let the smallest element greater than or equal to α be 1

x ,
and let the largest element less than α be 1

y . Let S′′(n) contain c copies of 1
x and d copies of 1

y . We

choose some 0 < ε < c·d(y−2x)
c·y+2d·x , and we construct a new multiset F ′′(n) that is the same as S′′(n),

except we replace our c copies of 1
x with c + ε copies of 1

x(1+ ε
c )

, and we replace our d copies of 1
y

with d− ε copies of 1
y(1− εd)

.

1
y

1
y(1− εd)

1
x(1+ ε

c)

1
x

Figure 4: We show where 1
x and 1

y , as well as their modified replacements 1
x(1+ ε

c)
and 1

y(1− εd)
, fall

on a number line.

To reach a contradiction, it suffices to prove the following two claims: Claim 1: F ′′(n) is feasible
and Claim 2: Q(F ′′(n)) > P ′′(n).

Proof of Claim 1. When ε < c·d(y−2x)
c·y+2d·x , we have 1

x(1+ ε
c )
> 2 × 1

y(1− εd)
. Thus, the new values that

we introduced will not be in the same interval [α′, 2α′) with each other for any α′.

Further, new conflicts with values in F ′′(n) outside of the interval
[
1
y ,

1
x

]
will not be introduced

since the sums of copies of the two replaced values remain c
x and d

y , and any element that these

new values interact with must have also been in the same interval [α′, 2α′) as the original values.
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Proof of Claim 2. We only consider the product of the terms which are different between S′′(n)

and F ′′(n). Hence, we must show
(
1
x

)c ( 1
y

)d
<

(
1

x(1+ ε
c )

)c+ε(
1

y(1− εd)

)d−ε
. We have that

ε <
cd(y − 2x)

cy + 2dx
<
cd(y − x)

cy + dx

which is equivalent to

1− ε
d

1 + ε
c

>
x

y
.

Because it is well-known that
(
1 + 1

n

)n
and

(
1− 1

n

)n
are monotonically increasing and convergent

to e and 1
e for all n ≥ 1, respectively, we know that

(
1 + ε

c

) c
ε < e and

(
1− ε

d

) d
ε < 1

e for all ε ≤ d.
To verify that our chosen ε is always less than or equal to d, we can start with the fact that

x(d+ c) > 0,

so
cy − cx < cy + dx,

and we rearrange to get that
cd(y − x)

cy + dx
< d.

Then, since ε < cd(y−x)
cy+dx , we have that ε ≤ d. Now we can multiply the inequalities

(
1 + ε

c

) c
ε < e

and
(
1− ε

d

) d
ε < 1

e together with x
y <

1− ε
d

1+ ε
c

from above to get that

1− ε
d

1 + ε
c

>
x

y

(
1 +

ε

c

) c
ε
(

1− ε

d

) d
ε
,

which, after we take both sides to the ε power, transforms into

(
1

x

)c(1

y

)d
<

(
1

x
(
1 + ε

c

))c+ε( 1

y
(
1− ε

d

))d−ε
which finishes the proof of the second claim.

If we could prove the strengthened theorem that for any positive integer n and all α such that
minS′′(n)

2 < α ≤ maxS′′(n), the interval Iα = [α, 2α) contains exactly one distinct element, then
the following conjecture holds.

Conjecture 5.2. All values in the multiset S′′(n) take the form x, x2 ,
x
4 ,

x
8 , . . .

Note that if Conjecture 5.2 holds, then a multiset is optimal if and only if we insert elements greed-
ily, starting with some number x: for example, 1

x copies of x, 2
x copies of x

2 , and so on.
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